Skip to main content

Core-Associated Genome Replication Mechanisms of dsRNA Viruses

  • Chapter
  • First Online:
Viral Genome Replication
  • 1706 Accesses

The double-stranded RNA (dsRNA) viruses are a diverse group, which infect a wide assortment of prokaryotic and eukaryotic hosts. Although not all dsRNA viruses are considered pathogens, many cause devastating disease in their hosts and have widespread medical, veterinary, and agricultural impacts. Currently, the International Committee for the Taxonomy of Viruses (ICTV) recognizes seven distinct families of dsRNA viruses (Hypoviridae, Totiviridae, Birnaviridae, Partitiviridae, Cystoviridae, Chrysoviridae, and Reoviridae) (Table 11.1) (http://phene.cpmc.columbia.edu). Of these families, Reoviridae is composed of the largest number of individual species, which are categorized into 12 separate genera, and includes some of the most severe dsRNA viral pathogens of humans and domestic animals (Mellor and Boorman, 1995; Parashar et al., 2003). In particular, rotaviruses are members of the Reoviridae family and a leading cause of lethal gastroenteritis in young children and infants (Parashar et al., 2003). As such, the Reoviridae family has been studied in detail, providing insights into the general strategies dsRNA viruses use to propagate. Members of the Totiviridae and Cystoviridae families, which infect fungi and bacteria, respectively, have replication strategies similar to Reoviridae and are often viewed as models for understanding dsRNA virus biology (Mindich, 2004; Poranen and Tuma, 2004; Wickner, 1996). Together, studies of these three virus families have elucidated several common themes in dsRNA virus replication: (i) RNA synthesis occurs within a protected core via an anchored RNA-dependent RNA polymerase (RdRp); (ii) genome replication and capsid assembly occur simultaneously; and (iii) cis-acting elements in the viral RNA determine template specificity. This chapter will explore these themes regarding the core-associated genome replication of dsRNA viruses by reviewing structural and biochemical studies of individual members of Totiviridae, Cystoviridae, and Reoviridae families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlquist, P. (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Reviews 4(5), 371–82.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, M., Wehrfritz, J., Noad, R. and Roy, P. (2004) Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity. Journal of Virology 78(8), 3994–4002.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, S.J., Dokland, T., Ojala, P.M., Bamford, D.H. and Fuller, S.D. (1997) Intermediates in the assembly pathway of the double-stranded RNA virus phi6. The EMBO Journal 16(14), 4477–87.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, S.J., Grimes, J.M., Makeyev, E.V., Bamford, D.H. and Stuart, D.I. (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410(6825), 235–40.

    Article  PubMed  CAS  Google Scholar 

  • Caspar, D.L. and Klug, A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia on Quantitative Biology 27, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Caston, J.R., Luque, D., Trus, B.L., Rivas, G., Alfonso, C., Gonzalez, J.M., Carrascosa, J.L., Annamalai, P. and Ghabrial, S.A. (2006) Three-dimensional structure and stoichiometry of Helmintosporium victoriae190S totivirus. Virology 347(2), 323–32.

    Article  PubMed  CAS  Google Scholar 

  • Caston, J.R., Trus, B.L., Booy, F.P., Wickner, R.B., Wall, J.S. and Steven, A.C. (1997) Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. The Journal of Cell Biology 138(5), 975–85.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Barros, M., Spencer, E. and Patton, J.T. (2001) Features of the 3'-consensus sequence of rotavirus mRNAs critical to minus strand synthesis. Virology 282(2), 221–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D. and Patton, J.T. (1998) Rotavirus RNA replication requires a single-stranded 3' end for efficient minus-strand synthesis. Journal of Virology 72(9), 7387–96.

    PubMed  CAS  Google Scholar 

  • Chen, D. and Patton, J.T. (2000) De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation. RNA (New York, NY) 6(10), 1455–67.

    Article  CAS  Google Scholar 

  • Chen, D., Zeng, C.Q., Wentz, M.J., Gorziglia, M., Estes, M.K. and Ramig, R.F. (1994) Template-dependent, in vitro replication of rotavirus RNA. Journal of Virology 68(11), 7030–9.

    PubMed  CAS  Google Scholar 

  • Cheng, R.H., Caston, J.R., Wang, G.J., Gu, F., Smith, T.J., Baker, T.S., Bozarth, R.F., Trus, B.L., Cheng, N., Wickner, R.B., et al. (1994) Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. Journal of Molecular Biology 244(3), 255–8.

    Article  PubMed  CAS  Google Scholar 

  • Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B. and Rey, F.A. (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120(6), 761–72.

    Article  PubMed  CAS  Google Scholar 

  • Dinman, J.D., Icho, T. and Wickner, R.B. (1991) A –1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag–pol fusion protein. Proceedings of the National Academy of Sciences of the United States of America 88(1), 174–8.

    Article  PubMed  CAS  Google Scholar 

  • Diprose, J.M., Burroughs, J.N., Sutton, G.C., Goldsmith, A., Gouet, P., Malby, R., Overton, I., Zientara, S., Mertens, P.P., Stuart, D.I. and Grimes, J.M. (2001) Translocation portals for the substrates and products of a viral transcription complex: the bluetongue virus core. The EMBO Journal 20(24), 7229–39.

    Article  PubMed  CAS  Google Scholar 

  • Esteban, R., Fujimura, T. and Wickner, R.B. (1989) Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. The EMBO Journal 8(3), 947–54.

    PubMed  CAS  Google Scholar 

  • Fang, Q., Shah, S., Liang, Y. and Zhou, Z.H. (2005) 3D reconstruction and capsid protein characterization of grass carp reovirus. Science in China 48(6), 593–600.

    PubMed  CAS  Google Scholar 

  • Fujimura, T., Ribas, J.C., Makhov, A.M. and Wickner, R.B. (1992) Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359(6397), 746–9.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, T. and Wickner, R.B. (1989) Reconstitution of template-dependent in vitro transcriptase activity of a yeast double-stranded RNA virus. The Journal of Biological Chemistry 264(18), 10872–7.

    PubMed  CAS  Google Scholar 

  • Gallegos, C.O. and Patton, J.T. (1989) Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172(2), 616–27.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sastre, A. and Biron, C.A. (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science (New York, NY) 312(5775), 879–82.

    Article  CAS  Google Scholar 

  • Gottlieb, P., Qiao, X., Strassman, J., Frilander, M. and Mindich, L. (1994) Identification of the packaging regions within the genomic RNA segments of bacteriophage phi 6. Virology 200(1), 42–7.

    Article  PubMed  CAS  Google Scholar 

  • Grimes, J.M., Burroughs, J.N., Gouet, P., Diprose, J.M., Malby, R., Zientara, S., Mertens, P.P. and Stuart, D.I. (1998) The atomic structure of the bluetongue virus core. Nature 395(6701), 470–8.

    Article  PubMed  CAS  Google Scholar 

  • Grimes, J.M., Jakana, J., Ghosh, M., Basak, A.K., Roy, P., Chiu, W., Stuart, D.I. and Prasad, B.V. (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure (London, England) 5(7), 885–93.

    Article  CAS  Google Scholar 

  • Hewat, E.A., Booth, T.F. and Roy, P. (1992) Structure of bluetongue virus particles by cryoelectron microscopy. Journal of Structural Biology 109(1), 61–9.

    Article  PubMed  CAS  Google Scholar 

  • Hill, C.L., Booth, T.F., Prasad, B.V., Grimes, J.M., Mertens, P.P., Sutton, G.C. and Stuart, D.I. (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nature Structural Biology 6(6), 565–8.

    Article  PubMed  CAS  Google Scholar 

  • Huiskonen, J.T., de Haas, F., Bubeck, D., Bamford, D.H., Fuller, S.D. and Butcher, S.J. (2006) Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure (London, England) 14(6), 1039–48.

    Article  CAS  Google Scholar 

  • Jaalinoja, H.T., Huiskonen, J.T. and Butcher, S.J. (2007) Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8. Structure (London, England) 15(2), 157–67.

    Article  Google Scholar 

  • Jacob-Wilk, D., Turina, M. and Van Alfen, N.K. (2006) Mycovirus cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. Journal of Virology 80(13), 6588–96.

    Article  PubMed  CAS  Google Scholar 

  • Jayaram, H., Estes, M.K. and Prasad, B.V. (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Research 101(1), 67–81.

    Article  PubMed  CAS  Google Scholar 

  • Kainov, D.E., Butcher, S.J., Bamford, D.H. and Tuma, R. (2003) Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. Journal of Molecular Biology 328(4), 791–804.

    Article  PubMed  CAS  Google Scholar 

  • Kar, A.K., Ghosh, M. and Roy, P. (2004) Mapping the assembly pathway of Bluetongue virus scaffolding protein VP3. Virology 324(2), 387–99.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Tao, Y., Reinisch, K.M., Harrison, S.C. and Nibert, M.L. (2004) Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein–protein interfaces. Virus Research 101(1), 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, M., Baudoux, P., Charpilienne, A., Poncet, D. and Cohen, J. (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. The Journal of General Virology 75 (Pt 12), 3423–30.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, J.A., Estes, M.K. and Prasad, B.V. (1997a) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nature Structural Biology 4(2), 118–21.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, J.A., Estes, M.K. and Prasad, B.V. (2000) Mechanism of genome transcription in segmented dsRNA viruses. Advances in Virus Research 55, 185–229.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, J.A., Zeng, C.Q., Mukherjee, S.K., Cohen, J., Estes, M.K. and Prasad, B.V. (1997b) Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. Journal of Virology 71(10), 7353–60.

    PubMed  CAS  Google Scholar 

  • Levy, D.E. and Garcia-Sastre, A. (2001) The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews 12(2–3), 143–56.

    Article  CAS  Google Scholar 

  • Lu, G., Zhou, Z.H., Baker, M.L., Jakana, J., Cai, D., Wei, X., Chen, S., Gu, X. and Chiu, W. (1998) Structure of double-shelled rice dwarf virus. Journal of Virology 72(11), 8541–9.

    PubMed  CAS  Google Scholar 

  • Makeyev, E.V. and Grimes, J.M. (2004) RNA-dependent RNA polymerases of dsRNA bacteriophages. Virus Research 101(1), 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, P.S. and Boorman, J. (1995) The transmission and geographical spread of African horse sickness and bluetongue viruses. Annals of Tropical Medicine and Parasitology 89(1), 1–15.

    PubMed  CAS  Google Scholar 

  • Mertens, P. (2004) The dsRNA viruses. Virus Research 101(1), 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Mertens, P.P. and Diprose, J. (2004) The bluetongue virus core: a nano-scale transcription machine. Virus Research 101(1), 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, P., Cyrklaff, M. and Adrian, M. (1991) The three-dimensional structure of reovirus obtained by cryo-electron microscopy. The EMBO Journal 10(11), 3129–36.

    PubMed  CAS  Google Scholar 

  • Mindich, L. (2004) Packaging, replication and recombination of the segmented genome of bacteriophage Phi6 and its relatives. Virus Research 101(1), 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Mossi, R. and Hubscher, U. (1998) Clamping down on clamps and clamp loaders – the eukaryotic replication factor C. European Journal of Biochemistry/FEBS 254(2), 209–16.

    PubMed  CAS  Google Scholar 

  • Naitow, H., Tang, J., Canady, M., Wickner, R.B. and Johnson, J.E. (2002) L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nature Structural Biology 9(10), 725–8.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, A., Miyazaki, N., Taka, J., Naitow, H., Ogawa, A., Fujimoto, Z., Mizuno, H., Higashi, T., Watanabe, Y., Omura, T., Cheng, R.H. and Tsukihara, T. (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure (Cambridge, Mass.) 11(10), 1227–38.

    CAS  Google Scholar 

  • O’Reilly, E.K. and Kao, C.C. (1998) Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252(2), 287–303.

    Article  PubMed  Google Scholar 

  • Ojala, P.M. and Bamford, D.H. (1995) In vitro transcription of the double-stranded RNA bacteriophage phi 6 is influenced by purine NTPs and calcium. Virology 207(2), 400–8.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, S., Qiao, X., Gottlieb, P., Strassman, J., Frilander, M. and Mindich, L. (1993) RNA structure and heterologous recombination in the double-stranded RNA bacteriophage phi 6. Journal of Virology 67(8), 4914–22.

    PubMed  CAS  Google Scholar 

  • Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A. and Glass, R.I. (2003) Global illness and deaths caused by rotavirus disease in children. Emerging Infectious Diseases 9(5), 565–72.

    Article  PubMed  Google Scholar 

  • Patton, J.T. (1996) Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. Journal of Virology 70(11), 7940–7.

    PubMed  CAS  Google Scholar 

  • Patton, J.T. (2001) Rotavirus RNA replication and gene expression. Novartis Foundation Symposium 238, 64–77; discussion 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T., Chnaiderman, J. and Spencer, E. (1999) Open reading frame in rotavirus mRNA specifically promotes synthesis of double-stranded RNA: template size also affects replication efficiency. Virology 264(1), 167–80.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T. and Gallegos, C.O. (1990) Rotavirus RNA replication: single-stranded RNA extends from the replicase particle. The Journal of General Virology 71 (Pt 5), 1087–94.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T., Jones, M.T., Kalbach, A.N., He, Y.W. and Xiaobo, J. (1997) Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. Journal of Virology 71(12), 9618–26.

    PubMed  CAS  Google Scholar 

  • Patton, J.T., Silvestri, L.S., Tortorici, M.A., Vasquez-Del Carpio, R. and Taraporewala, Z.F. (2006) Rotavirus genome replication and morphogenesis: role of the viroplasm. Current Topics in Microbiology and Immunology 309, 169–87.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T. and Spencer, E. (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277(2), 217–25.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T., Vasquez-Del Carpio, R. and Spencer, E. (2004) Replication and transcription of the rotavirus genome. Current Pharmaceutical Design 10(30), 3769–77.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T., Vasquez-Del Carpio, R., Tortorici, M.A. and Taraporewala, Z.F. (2007) Coupling of rotavirus genome replication and capsid assembly. Advances in Virus Research 69, 167–201.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.T., Wentz, M., Xiaobo, J. and Ramig, R.F. (1996) cis-Acting signals that promote genome replication in rotavirus mRNA. Journal of Virology 70(6), 3961–71.

    PubMed  CAS  Google Scholar 

  • Petterson, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. (2004) UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13), 1605–12.

    Article  Google Scholar 

  • Poranen, M.M. and Tuma, R. (2004) Self-assembly of double-stranded RNA bacteriophages. Virus Research 101(1), 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, B.V., Rothnagel, R., Zeng, C.Q., Jakana, J., Lawton, J.A., Chiu, W. and Estes, M.K. (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382(6590), 471–3.

    Article  PubMed  CAS  Google Scholar 

  • Reinisch, K.M., Nibert, M.L. and Harrison, S.C. (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404(6781), 960–7.

    Article  PubMed  CAS  Google Scholar 

  • Ribas, J.C. and Wickner, R.B. (1992) RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: definition of essential domains. Proceedings of the National Academy of Sciences of the United States of America 89(6), 2185–9.

    Article  PubMed  CAS  Google Scholar 

  • Roner, M.R. and Steele, B.G. (2007) Localizing the reovirus packaging signals using an engineered m1 and s2 ssRNA. Virology 358(1), 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Roy, P. and Noad, R. (2006) Bluetongue virus assembly and morphogenesis. Current Topics in Microbiology and Immunology 309, 87–116.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, C.M., Borelli, I.A., Lander, G., Natarajan, P., Siddavanahalli, V., Bajaj, C., Johnson, J.E., Brooks, C.L., 3rd and Reddy, V.S. (2006) VIPERdb: a relational database for structural virology. Nucleic Acids Research 34(Database issue), D386–9.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A.C., Trus, B.L., Booy, F.P., Cheng, N., Zlotnick, A., Caston, J.R. and Conway, J.F. (1997) The making and breaking of symmetry in virus capsid assembly: glimpses of capsid biology from cryoelectron microscopy. The FASEB Journal 11(10), 733–42.

    PubMed  CAS  Google Scholar 

  • Tao, Y., Farsetta, D.L., Nibert, M.L. and Harrison, S.C. (2002) RNA synthesis in a cage – structural studies of reovirus polymerase lambda3. Cell 111(5), 733–45.

    Article  PubMed  CAS  Google Scholar 

  • Tortorici, M.A., Broering, T.J., Nibert, M.L. and Patton, J.T. (2003) Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. The Journal of Biological Chemistry 278(35), 32673–82.

    Article  PubMed  CAS  Google Scholar 

  • Tortorici, M.A., Shapiro, B.A. and Patton, J.T. (2006) A base-specific recognition signal in the 5' consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. RNA (New York, NY) 12(1), 133–46.

    Article  CAS  Google Scholar 

  • Wentz, M.J., Patton, J.T. and Ramig, R.F. (1996) The 3'-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. Journal of Virology 70(11), 7833–41.

    PubMed  CAS  Google Scholar 

  • Wickner, R.B. (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiological Reviews 60(1), 250–65.

    PubMed  CAS  Google Scholar 

  • Wickner, R.B., Fujimura, T. and Esteban, R. (1986) Overview of double-stranded RNA replication in Saccharomyces cerevisiae. Basic Life Sciences 40, 149–63.

    PubMed  CAS  Google Scholar 

  • Xia, Q., Jakana, J., Zhang, J.Q. and Zhou, Z.H. (2003) Structural comparisons of empty and full cytoplasmic polyhedrosis virus. Protein–RNA interactions and implications for endogenous RNA transcription mechanism. The Journal of Biological Chemistry 278(2), 1094–100.

    Article  PubMed  CAS  Google Scholar 

  • Yeager, M., Dryden, K.A., Olson, N.H., Greenberg, H.B. and Baker, T.S. (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. The Journal of Cell Biology 110(6), 2133–44.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, C.Q., Estes, M.K., Charpilienne, A. and Cohen, J. (1998) The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. Journal of Virology 72(1), 201–8.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Tang, J., Walker, S.B., O’Hara, D., Nibert, M.L., Duncan, R. and Baker, T.S. (2005) Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343(1), 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Walker, S.B., Chipman, P.R., Nibert, M.L. and Baker, T.S. (2003) Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nature Structural Biology 10(12), 1011–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z.H., Zhang, H., Jakana, J., Lu, X.Y. and Zhang, J.Q. (2003) Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. Structure (London, England) 11(6), 651–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McDonald, S.M., Patton, J.T. (2009). Core-Associated Genome Replication Mechanisms of dsRNA Viruses. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_11

Download citation

Publish with us

Policies and ethics