Advertisement

Nano-Imaging of Polymers by Optical Microscopy

  • Shinzaburo ItoEmail author
  • Hiroyuki Aoki
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 182)

Abstract

The developments of laser scanning confocal microscopy (LSCM) and scanning near-field optical microscopy (SNOM) have expanded the application range of optical microscopy from micron to nanometer dimensions, in which the molecular and macromolecular materials exhibit intrinsic fundamental characteristics closely related to their functionality. Although atomic force and electron microscopes have often been utilized for observing materials in nanometer dimensions, the world of the critical length (10–100 nm) of nano-technology and science is now illuminated by “light”, and is revealed as real optical images from different points of view associated with not only morphology but also spectroscopic, analytical, time-resolved and opto-electrical responses in a local space. This article reviews the recent findings made by LSCM and SNOM mainly in terms of morphology of polymeric materials; particular concerns are in the phase-separated structures of polymer blends, conformation and morphology of a single polymer chain, and also two-dimensional ultra-thin polymer films. These optical techniques will become an indispensable tool for understanding molecular and biological systems.

Scanning near-field optical microscopy (SNOM) Laser scanning conforcal microscopy (LSCM) Fluorescence spectroscopy Single polymer chain Nano-structure 

Abbreviations

AFM

atomic force microscopy

BAM

Brewster angle microscopy

BS

beam splitter

DNA

deoxyribonucleic acid

DUV

deep ultraviolet

Eo

eosin

FWHM

full width at half maximum

IPN

interpenetrating polymer network

LB

Langmuir-Blodgett

LSCM

laser scanning confocal microscopy

LSCFM

laser scanning confocal fluorescence microscopy

NA

numerical aperture

OM

optical microscopy

PB

polybutadiene

PDF

poly(9,9-dialkylfluorene)

Pe

perylene

PiBMA

poly(isobutyl methacrylate)

PMMA

poly(methyl methacrylate)

PODMA

poly(octadecyl methacrylate)

PPV

poly(p-phenylenevinylene)

PS

polystyrene

Py

pyrene

R6G

rhodamine-6G

SBR

poly(styrene-ran-butadiene)

SD

spinodal decomposition

SEM

scanning electron microscopy

SNOM

scanning near-field optical microscopy

STED

stimulated emission depletion

SWNT

single wall carbon nanotube

TEM

transmission electron microscopy

TIR

total internal reflection

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson T (1990) Confocal Microscopy. Academic Press, London Google Scholar
  2. 2.
    Webb RH (1996) Rep Prog Phys 59:427 CrossRefGoogle Scholar
  3. 3.
    Brakenhoff GJ, Blom P, Barends P (1979) J Microsc 117:219 CrossRefGoogle Scholar
  4. 4.
    Gensch T, Hofkens J, van Stam J, Faes H, Creutz S, Tsuda K, Jerome R, Masuhara H, De Schryver FC (1998) J Phys Chem B 102:8440 CrossRefGoogle Scholar
  5. 5.
    Verhoogt H, van Dam J, Posthuma de Boer A, Draaijer A, Houpt PM (1993) Polymer 34:1325 CrossRefGoogle Scholar
  6. 6.
    Li L, Sosnowski S, Chaffey CE, Balke ST, Winnik MA (1994) Langmuir 10:2495 CrossRefGoogle Scholar
  7. 7.
    Kumacheva E, Li L, Winnik MA, Shinozaki DM, Cheng PC (1997) Langmuir 13:2483 CrossRefGoogle Scholar
  8. 8.
    Harmon ME, Schrof W, Frank CW (2003) Polymer 44:6927 CrossRefGoogle Scholar
  9. 9.
    Vorobyova O, Winnik MA (2001) J Polym Sci B 39:2317 CrossRefGoogle Scholar
  10. 10.
    Vorobyova O, Winnik MA (2001) Macromolecules 34:2298 CrossRefGoogle Scholar
  11. 11.
    Wu J, Li H, Winnik MA, Farwaha R, Rademacher J (2004) J Polym Sci A 42:5005 CrossRefGoogle Scholar
  12. 12.
    Ribbe AE, Hashimoto T (1997) Macromolecules 30:3999 CrossRefGoogle Scholar
  13. 13.
    Jinnai H, Nishikawa Y, Morimoto H, Koga T, Hashimoto T (2000) Langmuir 16:4380 CrossRefGoogle Scholar
  14. 14.
    Jinnai H, Kitagishi H, Hamano K, Nishikawa Y, Takahashi M (2003) Phys Rev E 67:021801 CrossRefGoogle Scholar
  15. 15.
    Newby BZ, Composto RJ (2000) Macromolecules 33:3274 CrossRefGoogle Scholar
  16. 16.
    Moffitt M, Rharbi Y, Tong JD, Farhina JPS, Li H, Winnik MA, Zahalka H (2003) J Polym Sci B 41:637 CrossRefGoogle Scholar
  17. 17.
    Ma Y, Farinha JPS, Winnik MA, Yaneff PV, Ryntz RA (2004) Macromolecules 37:6544 CrossRefGoogle Scholar
  18. 18.
    Jinnai H, Yoshida H, Kimishima K, Funaki Y, Hirokawa Y, Ribbe AE, Hashimoto H (2001) Macromolecules 34:5186 CrossRefGoogle Scholar
  19. 19.
    Vanden Bout DA, Yip W-T, Hu D, Fu D-K, Swager TM, Barbara PF (1997) Science 277:1074 CrossRefGoogle Scholar
  20. 20.
    Huser T, Yan M (2001) J Photochem Photobio A 144:43 CrossRefGoogle Scholar
  21. 21.
    Huser T, Yan M, Rothberg LJ (2000) Proc Natl Acad Sci USA 97:11187 CrossRefGoogle Scholar
  22. 22.
    Sartori SS, De Feyter S, Hofkens J, Van der Auweraer M, De Schryver F, Brunner K, Hofstraat JW (2003) Macromolecules 36:500 CrossRefGoogle Scholar
  23. 23.
    Schindler F, Lupton JM, Feldmann J, Scherf U (2004) Proc Natl Acad Sci USA 101:14695 CrossRefGoogle Scholar
  24. 24.
    Hu D, Yu J, Barbara PF (1999) J Am Chem Soc 121:6936 CrossRefGoogle Scholar
  25. 25.
    Lee J, Lee J, Lee M, Lee K-J-B, Ko D-S (2004) Chem Phys Lett 394:49 CrossRefGoogle Scholar
  26. 26.
    Ito S, Aoki H (2003) Bull Chem Soc Jpn 76:1693 CrossRefGoogle Scholar
  27. 27.
    Vallee RAL, Cotlet M, Hofkens J, De Schryver F, Muellen K (2003) Macromolecules 36:7752 CrossRefGoogle Scholar
  28. 28.
    Vallee RAL, Tomczak N, Kuipers L, Vancso GJ, van Hulst NF (2003) Phys Rev Lett 91:038301 CrossRefGoogle Scholar
  29. 29.
    Vallee RAL, Vancso GJ, van Hulst NF, Calbert JP, Cornil J, Bredas JL (2003) Chem Phys Lett 372:282 CrossRefGoogle Scholar
  30. 30.
    Tomczak N, Vallee RAL, van Dijk EMH, Kuipers L, van Hulst NF, Vancso GJ (2004) J Am Chem Soc 126:4748 CrossRefGoogle Scholar
  31. 31.
    Tomczak N, Vallee RAL, van Dijk EMH, Garcia-Parajo M, Kuipers L, van Hulst NF, Vancso GJ (2004) Euro Polym J 40:1001 CrossRefGoogle Scholar
  32. 32.
    Hofkens J, Vosch T, Maus M, Koehn F, Cotlet M, Weil M, Herrmann A, Muellen K, De Schryver FC (2001) Chem Phys Lett 333:255 CrossRefGoogle Scholar
  33. 33.
    Born M, Wolf E (1980) Principles of Optics. Pergamon Press, Oxford Google Scholar
  34. 34.
    Denk W, Strickler JH, Webb WW (1990) Science 248:73 CrossRefGoogle Scholar
  35. 35.
    Diaspro A, Robello M (2000) J Photochem Photobiol B:Biol 55:1 CrossRefGoogle Scholar
  36. 36.
    Nakamura O (1999) Microsc Res Tech 47:165 CrossRefGoogle Scholar
  37. 37.
    Hell SW, Wichmann J (1994) Opt Lett, 19:780 CrossRefGoogle Scholar
  38. 38.
    Klar T, Hell SW (1999) Opt Lett 24:954 CrossRefGoogle Scholar
  39. 39.
    Klar T, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Nat Acad Sci USA 97:8260 CrossRefGoogle Scholar
  40. 40.
    Westphal V, Blanca CM, Dyba M, Kastrup L, Hell SW (2003) Appl Phys Lett 82:3125 CrossRefGoogle Scholar
  41. 41.
    Osborne MA, Barnes CL, Balasubramanian S, Klenerman D (2001) J Phys Chem B 105:3120 CrossRefGoogle Scholar
  42. 42.
    Kang SH, Shortreed MR, Yeung ES (2001) Anal Chem 73:1091 CrossRefGoogle Scholar
  43. 43.
    Paesler MA, Moyer PJ (1996) Near-Field Optics: Theory, Instrumentation, and Applications. John Wiley & Sons, New York Google Scholar
  44. 44.
    Ohtsu M (1998) Near-Field Nano/Atom Optics and Technology. Springer, Tokyo CrossRefGoogle Scholar
  45. 45.
    Kawata S, Ohtsu M, Irie M (2002) Nano-Optics. Springer, Berlin Google Scholar
  46. 46.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468 CrossRefGoogle Scholar
  47. 47.
    Betzig E, Trautman JK (1992) Science 257:189 CrossRefGoogle Scholar
  48. 48.
    Vanden Bout DA, Kerimo J, Higgins DA, Barbara PF (1997) Acc Chem Res 30:204. CrossRefGoogle Scholar
  49. 49.
    Dunn RC (1999) Chem Rev 99:2891 CrossRefGoogle Scholar
  50. 50.
    Synge EH (1928) Phil Mag 6:356 Google Scholar
  51. 51.
    Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Phys Rev Lett 49:57 CrossRefGoogle Scholar
  52. 52.
    Binnig E, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930 CrossRefGoogle Scholar
  53. 53.
    Pangaribuan T, Yamada K, Jiang S, Ohsawa H, Ohtsu M (2002) Jpn J Appl Phys 31:L1302 CrossRefGoogle Scholar
  54. 54.
    Garcia-Parajo MF, Veerman JA, van Noort SJT, de Grooth BG, Greve J, van Hulst NF (1998) Bioimaging 6:43 CrossRefGoogle Scholar
  55. 55.
    Kumaki J, Nishikawa Y, Hashimoto T (1996) J Am Chem Soc 118:3321 CrossRefGoogle Scholar
  56. 56.
    Kumaki J, Hashimoto T (1998) J Am Chem Soc 120:423 CrossRefGoogle Scholar
  57. 57.
    Richards D, Cacialli F (2004) Phil. Trans R Soc Lond. A 362:771 CrossRefGoogle Scholar
  58. 58.
    Richards D (2003) Phil. Trans R Soc Lond. A 361:2843 CrossRefGoogle Scholar
  59. 59.
    Bethe HA (1944) Phys Rev 66:163 CrossRefGoogle Scholar
  60. 60.
    Ito S, Aoki H, Anryu M (2001) Trans Mater Res Soc Japan 26:929 Google Scholar
  61. 61.
    Naito K (1989) J Colloid Interface Sci 131:218 CrossRefGoogle Scholar
  62. 62.
    de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University, Ithaca, N.Y. Google Scholar
  63. 63.
    Sato N, Ito S, Yamamoto M (1996) Polym J 28:784 CrossRefGoogle Scholar
  64. 64.
    Sato N, Ito S, Yamamoto M (1998) Macromolecules 31:2673 CrossRefGoogle Scholar
  65. 65.
    Stevenson R, Milner RG, Richards D, Arias AC, Mackenzie JD, Halls JJM, Friend RH, Kang DJ, Blamire M (2001) J Microscopy 202:433. (S22 PF) CrossRefGoogle Scholar
  66. 66.
    Chappell J, Lidzey DG (2003) J Microscopy 209:188. (N19 blend PF) CrossRefGoogle Scholar
  67. 67.
    Kwak ES, Kang TJ, Vanden Bout DA (2001) Anal Chem 73:3257. (N31 decay) CrossRefGoogle Scholar
  68. 68.
    Teetsov J, Vanden Bout DA (2000) J Phys Chem B 104:9378 CrossRefGoogle Scholar
  69. 69.
    Teetsov J, Vanden Bout DA (2001) Macromol Symp 167:153 CrossRefGoogle Scholar
  70. 70.
    Teetsov J, Vanden Bout DA (2002) Langmuir 18:897 CrossRefGoogle Scholar
  71. 71.
    Hsu JH, Wei PK, Fann WS, Chuang KR, Chen SA (1998) Ultramicroscopy 71:263 CrossRefGoogle Scholar
  72. 72.
    DeAro JA, Lemmer U, Moses D, Buratto SK (1999) Synthetic Metals 101:300 CrossRefGoogle Scholar
  73. 73.
    Schaller RD, Lee LF, Johnson JC, Haber LH, Saykally RJ, Vieceli J, Benjamin H, Nguyen TQ, Schwartz BJ (2002) J Phys Chem B 106:9496 CrossRefGoogle Scholar
  74. 74.
    Nabetani Y, Yamasaki M, Miura A, Tamai N (2001) Thin Solid Films 393:329 CrossRefGoogle Scholar
  75. 75.
    Tan CH, Inigo AR, Hsu JH, Fann W, Wei PK (2001) J Phys Chem Solids 62:1643 CrossRefGoogle Scholar
  76. 76.
    DeAro JA, Moses D, Buratto SK (1999) Appl Phys Lett 75:3814 CrossRefGoogle Scholar
  77. 77.
    Aoki H, Sakurai Y, Ito S, Nakagawa T (1999) J Phys Chem B, 103:10553 CrossRefGoogle Scholar
  78. 78.
    Aoki H, Ito S (2001) J Phys Chem B 105:4558 CrossRefGoogle Scholar
  79. 79.
    Aoki H, Kunai Y, Ito S, Yamada H, Matsushige K (2002) Appl Surf Sci 188:534 CrossRefGoogle Scholar
  80. 80.
    Sakurai Y, Sato N, Ito S, Yamamoto M (1999) Kobunshi-Ronbunshu 56:850 CrossRefGoogle Scholar
  81. 81.
    Hirokawa Y, Jinnai H, Nishikawa Y, Okamoto T, Hashimoto T (1999) Macromolecules 32:7093 CrossRefGoogle Scholar
  82. 82.
    Aoki H, Tanaka Ito SS, Yamamoto M (2000) Macromolecules 33:9650 CrossRefGoogle Scholar
  83. 83.
    Jahncke CL, Paesler PA, Hallen HD (1995) Appl Phys Lett 67:2483 CrossRefGoogle Scholar
  84. 84.
    Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Anal Chem 70:2646 CrossRefGoogle Scholar
  85. 85.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369 CrossRefGoogle Scholar
  86. 86.
    Hayazawa N, Yano T, Watanabe H, Inouyea Y, Kawata S (2003) Chem Phys Lett 376:174 CrossRefGoogle Scholar
  87. 87.
    Hartschuh A, Sanchez EJ, Xie SX, Novotny L (2003) Phys Rev Lett 90:095503 CrossRefGoogle Scholar
  88. 88.
    Knoll B, Keilmann F (1999) Nature 399:134 CrossRefGoogle Scholar
  89. 89.
    Taubner T, Hillenbrand R, Keilmann F (2004) Appl Phys Lett 85:5064 CrossRefGoogle Scholar
  90. 90.
    Aoki H, Hamamatsu T, Ito S (2004) Appl Phys Lett 84:356 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Polymer ChemistryGraduate School of EngineeringKyotoJapan

Personalised recommendations