Advertisement

Chemical Composition of Polymer Surfaces Imaged by Atomic Force Microscopyand Complementary Approaches

  • G. Julius VancsoEmail author
  • Henrik Hillborg
  • Holger Schönherr
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 182)

Abstract

In this article we review the recent developments in the field of high resolution lateral mapping of the surface chemical composition of polymers by atomic force microscopy (AFM) and other complementary imaging techniques. The different AFM approaches toward nanometer scale mapping with chemical sensitivity based on chemical force microscopy (CFM) are discussed as a means to unravel, for instance, the lateral distribution of surface chemistry, the stability of various types of functional groups in various environments, or the interactions with controlled functional groups at the tip surface. The applicability and current limitations of CFM, which allows one to image chemical functional group distributions with a resolution in principle down to the 10–20 nm scale, are critically discussed. In addition, complementary imaging techniques are briefly reviewed and compared to the AFM-based techniques. The complementary approaches comprise various spectroscopies (infrared and Raman), secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), X-ray photoelectron spectroscopy (XPS or ESCA), and near-field optical techniques used for imaging.

Keywords

Atomic Force Microscopy Contact Angle Polymer Surface Contact Angle Hysteresis Critical Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930 Google Scholar
  2. 2.
    Munz M, Cappella B, Sturm H, Geuss M, Schulz E (2003) Filler-reinforced elastomers scanning force microscopy. Springer, Berlin Heidelberg New York Google Scholar
  3. 3.
    Colton RJ, Engel A, Frommer JE, Gaub HE, Gewirth AA, Guckenberger R, Rabe J, Heckl WM, Parkinson B (1988) Procedures in scanning probe microscopies. Wiley, New York Google Scholar
  4. 4.
    Sheiko SS (2000) New developments in polymer analytics II. Springer, Berlin Heidelberg New York Google Scholar
  5. 5.
    Sarid D (1991) Scanning force microscopy: with applications to electric, magnetic and atomic forces. Oxford University Press, Oxford Google Scholar
  6. 6.
    Wiesendanger R (1994) Scanning probe microscopy and spectroscopy: methods and applications. Cambridge University Press, Cambridge Google Scholar
  7. 7.
    Magonov SNW (1996) Surface analysis with STM and AFM: experimental and theoretical aspects of image analysis. VCH, Weinheim Google Scholar
  8. 8.
    Ratner BD, Tsukruk VV (1998) ACS symposium series, vol. 694. American Chemical Society, Washington, DC Google Scholar
  9. 9.
    Tsukruk VV, Wahl KJ (1999) ACS symposium series, vol. 741. American Chemical Society, Washington, DC Google Scholar
  10. 10.
    Goh MC (1995) In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol. 91. Wiley, New York Google Scholar
  11. 11.
    Hamers RJ (1996) J Phys Chem 100:13 103 Google Scholar
  12. 12.
    Miles M (1997) Science 277:1845 Google Scholar
  13. 13.
    Miles MJ (1994) In: Spells (ed) Advances in the characterization of solid polymers. Chapman and Hall, London, p 17 Google Scholar
  14. 14.
    Frommer J (1992) Angew Chem Int Ed 31:1298 Google Scholar
  15. 15.
    Cappella B, Dietler G (1999) Surf Sci Rep 34:1 Google Scholar
  16. 16.
    Burnham NA, Colton RJ, Pollock HM (1993) Phys Rev Lett 70:247 Google Scholar
  17. 17.
    Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM (1994) Science 265:2071 Google Scholar
  18. 18.
    Garbassi F, Morra M, Occhiello E (2000) Polymer surfaces: From physics to technology. Wiley, New York Google Scholar
  19. 19.
    Koenig JL (1998) Microspectroscopic imaging of polymers. Oxford University Press, Oxford Google Scholar
  20. 20.
    Kirkwood JG, Buff FP (1951) J Chem Phys 19:774 Google Scholar
  21. 21.
    Segeren L, Wouters MEL, Bos M, Van den Berg JWA, Vancso GJ (2002) J Chromatogr A 969:215 Google Scholar
  22. 22.
    Tan ZJ, Vancso GJ (1997) Macromolecules 30:4665 Google Scholar
  23. 23.
    Wendorff JH, Fischer EW (1973) Kolloid-ZuZ Polymere 251:876 Google Scholar
  24. 24.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces. Wiley Interscience, New York Google Scholar
  25. 25.
    Massia SP, Hubbell JA (1991) J Cell Biol 114:1089 Google Scholar
  26. 26.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Science 276:1425 Google Scholar
  27. 27.
    Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG (2000) J Cell Sci 113:1677 Google Scholar
  28. 28.
    Craighead HG, James CD, Turner AMP (2001) Curr Opin Solid State Mater Sci 5:177 Google Scholar
  29. 29.
    Goessl A, Bowen-Pope DF, Hoffman AS (2001) J Biomed Mater Res 57:15 Google Scholar
  30. 30.
    Young T (1855) In: Murray PGJ (ed) Miscellaneous works, vol. 1, London, p 418 Google Scholar
  31. 31.
    Dupré A (1869) Théorie mécanique de la chaleur. Gauthier-Villars, Paris Google Scholar
  32. 32.
    Cassie ABD (1948) Discuss Faraday Soc 3:11 Google Scholar
  33. 33.
    Israelachvili JN, Gee ML (1989) Langmuir 5:288 Google Scholar
  34. 34.
    Laibinis PE, Whitesides GM (1992) J Am Chem Soc 114:9022 Google Scholar
  35. 35.
    Schönherr H, Feng CL, Shovsky A (2003) Langmuir 19:10 843 Google Scholar
  36. 36.
    Nicolau DV, Taguchi T, Taniguchi H, Yoshikawa S (1999) Langmuir 15:3845 Google Scholar
  37. 37.
    Morgen H, Pritchard DJ, Cooper JM (1995) Biosens Bioelectron 10:841 Google Scholar
  38. 38.
    Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) J Med Chem 37:1233 Google Scholar
  39. 39.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Science 251:767 Google Scholar
  40. 40.
    Thiebaud P, Lauer L, Knoll W, Offenhausser A (2002) Appl Surf Sci 17:87 Google Scholar
  41. 41.
    Effenhauser CS, Bruin GJM, Paulus A, Ehrat M (1997) Anal Chem 69:3451 Google Scholar
  42. 42.
    Makohliso SA, Leonard D, Giovangrandi L, Mathieu HJ, Ilegems M, Aebischer P (1999) Langmuir 15:2940 Google Scholar
  43. 43.
    Takano H, Sul JY, Mazzanti ML, Doyle RT, Haydon PG, Porter MD (2002) Anal Chem 74:4640 Google Scholar
  44. 44.
    Granlund T, Nyberg T, Roman LS, Svensson M, Inganas O (2000) Adv Mater 12:269 Google Scholar
  45. 45.
    Teetsov J, Vanden Bout DA (2000) J Phys Chem B 104:9378 Google Scholar
  46. 46.
    Xia YN, Whitesides GM (1998) Angew Chem Int Ed 37:551 Google Scholar
  47. 47.
    Xia YN, Rogers JA, Paul KE, Whitesides GM (1999) Chem Rev 99:1823 Google Scholar
  48. 48.
    Yasuda HK, Yeh YS, Fusselman S (1990) Pure Appl Chem 62:1689 Google Scholar
  49. 49.
    Shenton MJ, Lovell-Hoare MC, Stevens GC (2001) J Phys D: Appl Phys 34:2754 Google Scholar
  50. 50.
    Klages CP (1999) Materialwiss Werkstofftech 30:767 Google Scholar
  51. 51.
    Hollahan J, Bell A (1974) Wiley, New York Google Scholar
  52. 52.
    Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24:3 Google Scholar
  53. 53.
    Yasuda H (1985) Plasma polymerization. Academic Press, Orlando Google Scholar
  54. 54.
    Gupta B, Anjum N (2003) Radiation effects on polymers for biological use. Springer, Berlin Heidelberg New York Google Scholar
  55. 55.
    Meek JM, Craggs JD (1978) Electrical breakdown of gases. Wiley, New York Google Scholar
  56. 56.
    Tang LP, Wu YL, Timmons RB (1998) J Biomed Mater Res 42:156 Google Scholar
  57. 57.
    Schönherr H, Van Os MT, Forch R, Timmons RB, Knoll W, Vancso GJ (2000) Chem Mater 12:3689 Google Scholar
  58. 58.
    Schönherr H, Hruska Z, Vancso GJ (2000) Macromolecules 33:4532 Google Scholar
  59. 59.
    Ohl A, Schroder K (1999) Surf Coat Technol 119:820 Google Scholar
  60. 60.
    Rossier J, Reymond F, Michel PE (2002) Electrophoresis 23:858 Google Scholar
  61. 61.
    Skurat VE, Dorofeev YI (1994) Angew Makromol Chem 216:205 Google Scholar
  62. 62.
    Feiertag P, Kavc T, Meyer U, Gsoels I, Kern W, Rom I, Hofer F (2001) Synth Met 121:1371 Google Scholar
  63. 63.
    Vasilets VN, Nakamura K, Uyama Y, Ogata S, Ikada Y (1998) Polymer 39:2875 Google Scholar
  64. 64.
    Dai LM, Griesser HJ, Hong XY, Mau AWH, Spurling TH, Yang YY, White JW (1996) Macromolecules 29:282 Google Scholar
  65. 65.
    Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Nature 393:146 Google Scholar
  66. 66.
    Roberts MA, Rossier JS, Bercier P, Girault H (1997) Anal Chem 69:2035 Google Scholar
  67. 67.
    Lippert T, Wei J, Wokaun A, Hoogen N, Nuyken O (2000) Appl Surf Sci 168:270 Google Scholar
  68. 68.
    Schwarz A, Rossier JS, Roulet E, Mermod N, Roberts MA, Girault HH (1998) Langmuir 14:5526 Google Scholar
  69. 69.
    Nakayama Y, Matsuda T (1996) J Appl Phys 80:505 Google Scholar
  70. 70.
    Dobisz EA, Brandow SL, Bass R, Shirey LM (1998) J Vac Sci Technol B 16:3695 Google Scholar
  71. 71.
    Yasin S, Hasko DG, Ahmed H (2001) Appl Phys Lett 78:2760 Google Scholar
  72. 72.
    Kim HJ, Lee KJ, Seo Y (2002) Macromolecules 35:1267 Google Scholar
  73. 73.
    Berggren KK, Bard A, Wilbur JL, Gillaspy JD, Helg AG, McClelland JJ, Rolston SL, Phillips WD, Prentiss M, Whitesides GM (1995) Science 269:1255 Google Scholar
  74. 74.
    Uyama Y, Kato K, Ikada Y (1998) Grafting/characterization techniques=kinetic modeling (Advances in Polymer Science), vol. 137. Springer, Berlin Heidelberg New York Google Scholar
  75. 75.
    Chapiro A (1981) EPJ 19:859 Google Scholar
  76. 76.
    Ogiwara Y, Kanda M, Takumi M, Kubota H (1981) J Polym Sci, Part B:Polym Phys 19:457 Google Scholar
  77. 77.
    Oster G, Shibata O (1957) J Polym Sci 26:233 Google Scholar
  78. 78.
    Uchida E, Uyama Y, Ikada Y (1989) J Polym Sci, Part A: Polym Chem 27:527 Google Scholar
  79. 79.
    Tazuke S, Kimura H (1978) J Polym Sci, Part B: Polym Lett 16:497 Google Scholar
  80. 80.
    Zhao B, Brittain WJ (2000) Prog Polym Sci 25:677 Google Scholar
  81. 81.
    Zhao B, Brittain WJ, Zhou WS, Cheng SZD (2000) J Am Chem Soc 122:2407 Google Scholar
  82. 82.
    Husemann M, Morrison M, Benoit D, Frommer KJ, Mate CM, Hinsberg WD, Hedrick JL, Hawker CJ (2000) J Am Chem Soc 122:1844 Google Scholar
  83. 83.
    Nakayama Y, Matsuda T (1999) Langmuir 15:5560 Google Scholar
  84. 84.
    Ito Y, Chen GP, Guan YQ, Imanishi Y (1997) Langmuir 13:2756 Google Scholar
  85. 85.
    Hu SW, Ren XQ, Bachman M, Sims CE, Li GP, Allbritton N (2002) Anal Chem 74:4117 Google Scholar
  86. 86.
    Herminghaus S, Jacobs K, Mecke K, Bischof J, Fery A, Ibn-Elhaj M, Schlagowski S (1998) Science 282:916 Google Scholar
  87. 87.
    Higgins AM, Jones RAL (2000) Nature 404:476 Google Scholar
  88. 88.
    Sharp JS, Jones RAL (2002) Phys Rev E 66:11 801 Google Scholar
  89. 89.
    Dalnoki-Veress K, Nickel BG, Dutcher JR (1999) Phys Rev Lett 82:1486 Google Scholar
  90. 90.
    Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Nature 403:874 Google Scholar
  91. 91.
    Schaffer E, Harkema S, Roerdink M, Blossey R, Steiner U (2003) Adv Mater 15:514 Google Scholar
  92. 92.
    Chan CM (1994) Polymer surface modification and characterization. Hanser Gardner, München Google Scholar
  93. 93.
    Fox HW, Zisman WA (1950) J Colloid Sci 5:514 Google Scholar
  94. 94.
    Fox HW, Zisman WA (1952) J Colloid Sci 7:109 Google Scholar
  95. 95.
    Fox HW, Zisman WA (1952) J Colloid Sci 7:428 Google Scholar
  96. 96.
    Good RJ (1964) Adv Chem Ser 43:74 Google Scholar
  97. 97.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561 Google Scholar
  98. 98.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York Google Scholar
  99. 99.
    Wu S (1980) J Colloid Interface Sci 73:590 Google Scholar
  100. 100.
    Fowkes FM (1962) J Phys Chem 66:382 Google Scholar
  101. 101.
    Kaelble DH (1970) J Adhes 2:66 Google Scholar
  102. 102.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741 Google Scholar
  103. 103.
    Van Oss CJ, Good RJ, Chaudhury MK (1986) J Colloid Interface Sci 111:378 Google Scholar
  104. 104.
    Morra M, Occhiello E, Garbassi F (1990) Adv Colloid Interface Sci 32:79 Google Scholar
  105. 105.
    Kloubek J (1992) Adv Colloid Interface Sci 38:99 Google Scholar
  106. 106.
    Wu S, Brzozowski KJ (1971) J Colloid Interface Sci 37:686 Google Scholar
  107. 107.
    Wu S (1971) J Polym Sci C34:19 Google Scholar
  108. 108.
    Van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88:927 Google Scholar
  109. 109.
    Van Oss CJ, Chaudhury MK, Good RJ (1987) Adv Colloid Interface Sci 28:35 Google Scholar
  110. 110.
    Schönherr H, Hruska Z, Vancso GJ (1998) Macromolecules 31:3679 Google Scholar
  111. 111.
    Drelich J, Wilbur JL, Miller JD, Whitesides GM (1996) Langmuir 12:1913 Google Scholar
  112. 112.
    Johnson REJ, Dettre RH (1964) J Phys Chem 68:1744 Google Scholar
  113. 113.
    Israelachvilli JN (1991) Intermolecular and surface forces. Academic Press, London Google Scholar
  114. 114.
    Bistac S, Brogly M (2002) In: Somasundaran P (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, p 108 Google Scholar
  115. 115.
    Chen Y-L, Helm C, Israelachvilli JN (1991) J Phys Chem 95:10 736 Google Scholar
  116. 116.
    Israelachvilli JN, Chen Y-L, Yoshizawa H (1995) In: Rimai DS, Demejo LP, Mittal KL (eds) Fundamentals of adhesion and interfaces. VSP, Utrecht, p 261 Google Scholar
  117. 117.
    Hamaker HC (1937) Physica 4:1058 Google Scholar
  118. 118.
    Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci 232:17 Google Scholar
  119. 119.
    Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc London, Ser A 324:301 Google Scholar
  120. 120.
    Lifshitz EM (1995) Soviet Physics JETP-USSR 2:73 Google Scholar
  121. 121.
    Schönherr H, Beulen MWJ, Bugler J, Huskens J, Van Veggel FCJM, Reinhoudt DN, Vancso GJ (2000) J Am Chem Soc 122:4963 Google Scholar
  122. 122.
    Noy A, Frisbie CD, Rozsnyai LF, Wrighton MS, Lieber CM (1995) J Am Chem Soc 117:7943 Google Scholar
  123. 123.
    Noy A, Sanders CH, Vezenov DV, Wong SS, Lieber CM (1998) Langmuir 14:1508 Google Scholar
  124. 124.
    Vezenov DV, Noy A, Rozsnyai LF, Lieber CM (1997) J Am Chem Soc 119:2006 Google Scholar
  125. 125.
    Feldman K, Tervoort T, Smith P, Spencer ND (1998) Langmuir 14:372 Google Scholar
  126. 126.
    Thomas RC, Tangyunyong P, Houston JE, Michalske TA, Crooks RM (1994) J Phys Chem 98:4493 Google Scholar
  127. 127.
    Thomas RC, Houston JE, Crooks RM, Kim T, Michalske TA (1995) J Am Chem Soc 117:3830 Google Scholar
  128. 128.
    Akari S, Horn D, Keller H, Schrepp W (1995) Adv Mater 7:549 Google Scholar
  129. 129.
    Green JBD, McDermott MT, Porter MD, Siperko LM (1995) J Phys Chem 99:10 960 Google Scholar
  130. 130.
    Van der Vegte EW, Hadziioannou G (1997) J Phys Chem B 101:9563 Google Scholar
  131. 131.
    Schönherr H, Vancso GJ (1997) Macromolecules 30:6391 Google Scholar
  132. 132.
    Schönherr H, Vancso GJ (1998) J Polym Sci, Part B: Polym Phys 36:2483 Google Scholar
  133. 133.
    McKendry R, Theoclitou ME, Abell C, Rayment T (1998) Langmuir 14:2846 Google Scholar
  134. 134.
    McKendry R, Theoclitou ME, Rayment T, Abell C (1998) Nature 391:566 Google Scholar
  135. 135.
    Green JBD, McDermott MT, Porter MD (1996) J Phys Chem 100:13 342 Google Scholar
  136. 136.
    Noy A, Vezenov DV, Lieber CM (1997) Annu Rev Mater Sci 27:381 Google Scholar
  137. 137.
    Van der Vegte EW, Hadziioannou G (1997) Langmuir 13:4357 Google Scholar
  138. 138.
    Sinniah SK, Steel AB, Miller CJ, ReuttRobey JE (1996) J Am Chem Soc 118:8925 Google Scholar
  139. 139.
    Weihs TP, Nawaz Z, Jarvis SP, Pethica JB (1991) Appl Phys Lett 59:3536 Google Scholar
  140. 140.
    Sheiko SS, Moller M, Reuvekamp E, Zandbergen HW (1993) Phys Rev B 48:5675 Google Scholar
  141. 141.
    Binggeli M, Mate CM (1994) Appl Phys Lett 65:415 Google Scholar
  142. 142.
    Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Appl Phys Lett 54:2651 Google Scholar
  143. 143.
    Schönherr H (1999) From Functional Group Ensembles to Single Molecules: Scanning Force Microscopy of Supramolecular and Polymeric Systems, Ph. D. Thesis, University of Twente Google Scholar
  144. 144.
    Bar G, Thomann Y, Brandsch R, Cantow HJ, Whangbo MH (1997) Langmuir 13:3807 Google Scholar
  145. 145.
    Bar G, Brandsch R, Whangbo MH (1998) Langmuir 14:7343 Google Scholar
  146. 146.
    Bar G, Thomann Y, Whangbo MH (1998) Langmuir 14:1219 Google Scholar
  147. 147.
    Krausch G, Hipp M, Boltau M, Marti O, Mlynek J (1995) Macromolecules 28:260 Google Scholar
  148. 148.
    Overney RM, Meyer E, Frommer J, Brodbeck D, Luthi R, Howald L, Guntherodt HJ, Fujihira M, Takano H, Gotoh Y (1992) Nature 359:133 Google Scholar
  149. 149.
    Putman CAJ, De Grooth BG, Van Hulst NF, Greve J (1992) J Appl Phys 72:6 Google Scholar
  150. 150.
    Viani MB, Schaffer TE, Chand A, Rief M, Gaub HE, Hansma PK (1999) J Appl Phys 86:2258 Google Scholar
  151. 151.
    Viani MB, Schaffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999) Rev Sci Instrum 70:4300 Google Scholar
  152. 152.
    Burnham NA, Colton RJ, Pollock HM (1992) Phys Rev Lett 69:144 Google Scholar
  153. 153.
    Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868 Google Scholar
  154. 154.
    Sader JE (1998) J Appl Phys 84:64 Google Scholar
  155. 155.
    Tortonese M, Kirk M (1997) Proc SPIE 3009:53 Google Scholar
  156. 156.
    Weisenhorn AL, Maivald P, Butt HJ, Hansma PK (1992) Phys Rev B 45:11 226 Google Scholar
  157. 157.
    Carpick RW, Salmeron M (1997) Chem Rev 97:1163 Google Scholar
  158. 158.
    Vancso GJ, Schönherr H (1999) In: Tsukruk VV, Wahl KJ (eds) Microstructure and microtribology of polymer surfaces (ACS Symposium Series), vol. 741. American Chemical Society, New York, p 317 Google Scholar
  159. 159.
    Hugel T, Seitz M (2001) Macromol Rapid Commun 22:989 Google Scholar
  160. 160.
    Janshoff A, Neitzert M, Oberdorfer Y, Fuchs H (2000) Angew Chem Int Ed 39:3213 Google Scholar
  161. 161.
    Zapotoczny S, Auletta T, De Jong MR, Schönherr H, Huskens J, Van Veggel FCJM, Reinhoudt DN, Vancso GJ (2002) Langmuir 18:6988 Google Scholar
  162. 162.
    Auletta T, De Jong MR, Mulder A, van Veggel FCJM, Huskens J, Reinhoudt DN, Zou S, Zapotoczny S, Schönherr H, Vancso GJ, Kuipers L (2004) J Am Chem Soc 126:1577 Google Scholar
  163. 163.
    Jenkins ATA, Boden N, Bushby RJ, Evans SD, Knowles PF, Miles RE, Ogier SD, Schönherr H, Vancso GJ (1999) J Am Chem Soc 121:5274 Google Scholar
  164. 164.
    Alley RL, Komvopoulos K, Howe RT (1994) J Appl Phys 76:5731 Google Scholar
  165. 165.
    Howald L, Luthi R, Meyer E, Guthner P, Guntherodt HJ (1994) Z Phys B: Condens Matter 93:267 Google Scholar
  166. 166.
    Akari S, Schrepp W, Horn D (1996) Langmuir 12:857 Google Scholar
  167. 167.
    Werts MPL, Van der Vegte EW, Grayer V, Esselink E, Tsitsilianis C, Hadziioannou G (1998) Adv Mater 10:452 Google Scholar
  168. 168.
    Vancso GJ, Snétivy D, Schönherr H (1998) In: Ratner BD, Tsukruk VV (eds) Scanning probe microscopy of polymers (ACS Symposium Series), vol. 694. American Chemical Society, New York, p 67 Google Scholar
  169. 169.
    Vancso GJ, Förster S, Leist H (1996) Macromolecules 29:2158 Google Scholar
  170. 170.
    Nisman R, Smith P, Vancso GJ (1994) Langmuir 10:1667 Google Scholar
  171. 171.
    Smith PF, Nisman R, Ng C, Vancso GJ (1994) Polym Bull 33:459 Google Scholar
  172. 172.
    Pearce R, Vancso GJ (1998) Polymer 39:6743 Google Scholar
  173. 173.
    Mizes HA, Loh KG, Miller RJD, Ahuja SK, Grabowski EF (1991) Appl Phys Lett 59:2901 Google Scholar
  174. 174.
    Joyce SA, Houston JE, Michalske TA (1992) Appl Phys Lett 60:1175 Google Scholar
  175. 175.
    Van der Werf KO, Putman CAJ, De Grooth BG, Greve J (1994) Appl Phys Lett 65:1195 Google Scholar
  176. 176.
    Baselt DR, Baldeschwieler JD (1994) J Appl Phys 76:33 Google Scholar
  177. 177.
    Berger CEH, Van der Werf KO, Kooyman RPH, De Grooth BG, Greve J (1995) Langmuir 11:4188 Google Scholar
  178. 178.
    Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Appl Surf Sci 66:2159 Google Scholar
  179. 179.
    Hillborg H, Tomczak N, Olah A, Schönherr H, Vancso GJ (2004) Langmuir 20:785 Google Scholar
  180. 180.
    Jaeger R, Bergshoef MM, Batlle CMI, Schönherr H, Vancso GJ (1998) Macromol Symp 127:141 Google Scholar
  181. 181.
    Jaeger R, Schönherr H, Vancso GJ (1996) Macromolecules 29:7634 Google Scholar
  182. 182.
    Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O (1999) Surf Interface Anal 27:336 Google Scholar
  183. 183.
    Okabe Y, Furugori M, Tani Y, Akiba U, Fujihira M (2000) Ultramicroscopy 82:203 Google Scholar
  184. 184.
    Krotil HU, Stifter T, Marti O (2000) Rev Sci Instrum 71:2765 Google Scholar
  185. 185.
    Hruska Z, Lepot X (2000) J Fluorine Chem 105:87 Google Scholar
  186. 186.
    Duwez AS, Nysten B (2001) Langmuir 17:8287 Google Scholar
  187. 187.
    Duwez AS, Poleunis C, Bertrand P, Nysten B (2001) Langmuir 17:6351 Google Scholar
  188. 188.
    Ton-That C, Teare DOH, Bradley RH (2000) Chem Mater 12:2106 Google Scholar
  189. 189.
    Ton-That C, Campbell PA, Bradley RH (2000) Langmuir 16:5054 Google Scholar
  190. 190.
    Eaton PJ, Graham P, Smith JR, Smart JD, Nevell TG, Tsibouklis J (2000) Langmuir 16:7887 Google Scholar
  191. 191.
    Eaton P, Smith JR, Graham P, Smart JD, Nevell TG, Tsibouklis J (2002) Langmuir 18:3387 Google Scholar
  192. 192.
    Nie HY, Walzak MJ, Berno B, McIntyre NS (1999) Langmuir 15:6484 Google Scholar
  193. 193.
    Yip J, Chan K, Sin KM, Lau KS (2003) Appl Surf Sci 205:151 Google Scholar
  194. 194.
    Wang B, Chen L, Abdulali-Kanji Z, Horton JH, Oleschuk RD (2003) Langmuir 19:9792 Google Scholar
  195. 195.
    Bhargava R, Wall BG, Koenig JL (2000) Appl Spectrosc 54:470 Google Scholar
  196. 196.
    Benninghoven A (1994) Angew Chem Int Ed 33:1023 Google Scholar
  197. 197.
    Van Vaeck L, Adriaens A, Gijbels R (1999) Mass Spectrom Rev 18:1 Google Scholar
  198. 198.
    Adriaens A, Van Vaeck L, Adams F (1999) Mass Spectrom Rev 18:48 Google Scholar
  199. 199.
    Hagenhoff B (2000) Mikrochim Acta 132:259 Google Scholar
  200. 200.
    Chabala JM, Soni KK, Li J, Gavrilov KL, Levisetti R (1995) Int J Mass Spectrom Ion Processes 143:191 Google Scholar
  201. 201.
    Kotter F, Benninghoven A (1998) Appl Surf Sci 133:47 Google Scholar
  202. 202.
    Leonard D, Mathieu HJ (1999) Fresenius J Anal Chem 365:3 Google Scholar
  203. 203.
    Stapel D, Thiemann M, Benninghoven A (2000) Appl Surf Sci 158:362 Google Scholar
  204. 204.
    Stapel D, Benninghoven A (2001) Appl Surf Sci 174:261 Google Scholar
  205. 205.
    Hagenhoff B, Deimel M, Benninghoven A, Siegmund HU, Holtkamp D (1992) J Phys D: Appl Phys 25:818 Google Scholar
  206. 206.
    Bourdos N, Kollmer F, Benninghoven A, Sieber M, Galla HJ (2000) Langmuir 16:1481 Google Scholar
  207. 207.
    Frisbie CD, Wollman EW, Wrighton MS (1995) Langmuir 11:2563 Google Scholar
  208. 208.
    Bernasik A, Rysz J, Budkowski A, Kowalski K, Camara J, Jedlinski J (2001) Macromol Rapid Commun 22:829 Google Scholar
  209. 209.
    Bullett NA, Short RD, O'Leary T, Beck AJ, Douglas CWI, Cambray-Deakin M, Fletcher IW, Roberts A, Blomfield C (2001) Surf Interface Anal 31:1074 Google Scholar
  210. 210.
    Yang ZP, Belu AM, Liebmann-Vinson A, Sugg H, Chilkoti A (2000) Langmuir 16:7482 Google Scholar
  211. 211.
    Brummel CL, Lee INW, Zhou Y, Benkovic SJ, Winograd N (1994) Science 264:399 Google Scholar
  212. 212.
    Brummel CL, Vickerman JC, Carr SA, Hemling ME, Roberts GD, Johnson W, Weinstock J, Gaitanopoulos D, Benkovic SJ, Winograd N (1996) Anal Chem 68:237 Google Scholar
  213. 213.
    Pacholski ML, Winograd N (1999) Chem Rev 99:2977 Google Scholar
  214. 214.
    Cannon DM, Pacholski ML, Winograd N, Ewing AG (2000) J Am Chem Soc 122:603 Google Scholar
  215. 215.
    Belu AM, Yang ZP, Aslami R, Chilkoti A (2001) Anal Chem 73:143 Google Scholar
  216. 216.
    Leufgen KM, Rulle H, Benninghoven A, Sieber M, Galla HJ (1996) Langmuir 12:1708 Google Scholar
  217. 217.
    Weng LT, Smith TL, Feng JY, Chan CM (1998) Macromolecules 31:928 Google Scholar
  218. 218.
    Li HW, Huck WTS (2002) Curr Opin Solid State Mater Sci 6:3 Google Scholar
  219. 219.
    Quirk RA, Briggs D, Davies MC, Tendler SJB, Shakesheff KM (2001) Surf Interface Anal 31:46 Google Scholar
  220. 220.
    Deimel M, Rulle H, Liebing V, Benninghoven A (1998) Appl Surf Sci 134:271 Google Scholar
  221. 221.
    Gerardi C, DeRiccardis F, Milella E (1998) Mater Sci Eng, C 5:203 Google Scholar
  222. 222.
    Marien J, Ghitti G, Jerome R, Teyssie P (1993) Polym Bull 30:435 Google Scholar
  223. 223.
    Fulghum JE (1999) J Electron Spectrosc Relat Phenom 100:331 Google Scholar
  224. 224.
    Turner NH, Schreifels JA (2000) Anal Chem 72:99R Google Scholar
  225. 225.
    Drummond IW (1996) Philos Trans R Soc London, Ser A 354:2667 Google Scholar
  226. 226.
    Artyushkova K, Wall B, Koenig J, Fulghum JE (2000) Appl Spectrosc 54:1549 Google Scholar
  227. 227.
    Lippert T, Ortelli E, Panitz JC, Raimondi F, Wambach J, Wei J, Wokaun A (1999) Appl Phys A 69:S651 Google Scholar
  228. 228.
    Gusev AI, Vasseur OJ, Proctor A, Sharkey AG, Hercules DM (1995) Anal Chem 67:4565 Google Scholar
  229. 229.
    Garden RW, Sweedler JV (2000) Anal Chem 72:30 Google Scholar
  230. 230.
    Stoeckli M, Farmer TB, Caprioli RM (1999) J Am Soc Mass Spectrom 10:67 Google Scholar
  231. 231.
    Krause J, Stoeckli M, Schlunegger UP (1996) Rapid Commun Mass Spectrom 10:1927 Google Scholar
  232. 232.
    Tabaksblat R, Meier RJ, Kip BJ (1992) Appl Spectrosc 46:60 Google Scholar
  233. 233.
    Mulvaney SP, Keating CD (2000) Anal Chem 72:145R Google Scholar
  234. 234.
    Pappas D, Smith BW, Winefordner JD (2000) Appl Spectrosc Rev 35:1 Google Scholar
  235. 235.
    Keen I, Rintoul L, Fredericks PM (2001) Appl Spectrosc 55:984 Google Scholar
  236. 236.
    Kagan CR, Harris TD, Harris AL, Schilling ML (1998) J Chem Phys 108:6892 Google Scholar
  237. 237.
    Schaeberle MD, Morris HR, Turner JF, Treado PJ (1999) Anal Chem 71:175A Google Scholar
  238. 238.
    Appel R, Zerda TW, Waddell WH (2000) Appl Spectrosc 54:1559 Google Scholar
  239. 239.
    Blakey I, George GA (2000) Polym Degrad Stab 70:269 Google Scholar
  240. 240.
    Markwort L, Kip B, Dasilva E, Roussel B (1995) Appl Spectrosc 49:1411 Google Scholar
  241. 241.
    Kim H, Urban MW (2000) Langmuir 16:5382 Google Scholar
  242. 242.
    Zhao YQ, Urban MW (2000) Macromolecules 33:2184 Google Scholar
  243. 243.
    Schmidt P, Kolarik J, Lednicky F, Dybal J, Lagaron JM, Pastor JM (2000) Polymer 41:4267 Google Scholar
  244. 244.
    Morgan RL, Hill MJ, Barham PJ, Van der Pol A, Kip BJ, Ottjes R, van Ruitein J (2001) Polymer 42:2121 Google Scholar
  245. 245.
    Morris HR, Munroe B, Ryntz RA, Treado PJ (1998) Langmuir 14:2426 Google Scholar
  246. 246.
    Fernandez MR, Merino JC, Gobernado-Mitre MI, Pastor JM (2000) Appl Spectrosc 54:1105 Google Scholar
  247. 247.
    Rossier JS, Bercier P, Schwarz A, Loridant S, Girault HH (1999) Langmuir 15:5173 Google Scholar
  248. 248.
    Narita Y, Tadokoro T, Ikeda T, Saiki T, Mononobe S, Ohtsu M (1998) Appl Spectrosc 52:1141 Google Scholar
  249. 249.
    Jahncke CL, Paesler MA, Hallen HD (1995) Appl Phys Lett 67:2483 Google Scholar
  250. 250.
    Yang XM, Tryk DA, Hashimoto K, Fujishima A (1998) J Raman Spectrosc 29:725 Google Scholar
  251. 251.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957 Google Scholar
  252. 252.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241 Google Scholar
  253. 253.
    Yang XM, Tryk DA, Hasimoto K, Fujishima A (1996) Appl Phys Lett 69:4020 Google Scholar
  254. 254.
    Yang XM, Tryk DA, Ajito K, Hashimoto K, Fujishima A (1996) Langmuir 12:5525 Google Scholar
  255. 255.
    Teetsov JA, Vanden Bout DA (2001) J Am Chem Soc 123:3605 Google Scholar
  256. 256.
    Dunn RC (1999) Chem Rev 99:2891 Google Scholar
  257. 257.
    DeAro JA, Weston KD, Buratto SK, Lemmer U (1997) Chem Phys Lett 277:532 Google Scholar
  258. 258.
    Stevenson R, Granstrom M, Richards D (1999) Appl Phys Lett 75:1574 Google Scholar
  259. 259.
    Teetsov J, Vanden Bout DA (2001) Macromol Symp 167:153 Google Scholar
  260. 260.
    Teetsov J, Vanden Bout DA (2002) Langmuir 18:897 Google Scholar
  261. 261.
    DeAro JA, Moses D, Buratto SK (1999) Appl Phys Lett 75:3814 Google Scholar
  262. 262.
    DeAro JA, Lemmer U, Moses D, Buratto SK (1999) Synth Met 101:300 Google Scholar
  263. 263.
    DeAro JA, Gupta R, Heeger AJ, Buratto SK (1999) Synth Met 102:865 Google Scholar
  264. 264.
    Nguyen TQ, Martini IB, Liu J, Schwartz BJ (2000) J Phys Chem B 104:237 Google Scholar
  265. 265.
    Nguyen TQ, Schwartz BJ, Schaller RD, Johnson JC, Lee LF, Haber LH, Saykally RJ (2001) J Phys Chem B 105:5153 Google Scholar
  266. 266.
    Huser T, Yan M (2001) Synth Met 116:333 Google Scholar
  267. 267.
    Kwak ES, Kang TJ, Bout DAV (2001) Anal Chem 73:3257 Google Scholar
  268. 268.
    Dragnea B, Preusser J, Szarko JM, McDonough LA, Leone SR, Hinsberg WD (2001) Appl Surf Sci 175:783 Google Scholar
  269. 269.
    Dragnea B, Preusser J, Schade W, Leone SR, Hinsberg WD (1999) J Appl Phys 86:2795 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. Julius Vancso
    • 1
    Email author
  • Henrik Hillborg
    • 1
  • Holger Schönherr
    • 1
  1. 1.MESA+ Institute for Nanotechnology and Faculty of Science and Technology, Department of Materials Science and Technology of PolymersUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations