Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 166))

Abstract

Rod-like polyelectrolytes represent ideal model systems for a comprehensive comparison of theory and experiment because their conformation is independent of the ionic strength in the system. Hence, the correlation of the counterions to the highly charged macroion can be studied without the interference of conformational effects. In this chapter the synthesis and the solution behavior of rigid, rod-like cationic polyelectrolytes having poly(p-phenylene) (PPP) backbones is reviewed. These polymers can be characterized precisely and possess degrees of polymerization of up to P n ≈ 70. The analysis of the uncharged precursor polymer demonstrated that the PPP backbone has a high persistence length (ca. 22 nm) and hence may be regarded in an excellent approximation as rod-like macromolecules. The solution properties of the PPP-polyelectrolytes were analyzed using electric birefringence , small-angle X-ray scattering (SAXS) and osmometry. Measurements of the electric birefringence demonstrate that these systems form molecularly disperse systems in aqueous solution. The dependence of electric birefringence on the concentration of added salt indicates that an increase of ionic strength leads to stronger binding of counterions to the polyion. Data obtained from osmometry and small-angle X-ray scattering can directly be compared to the prediction of the Poisson-Boltzmann theory and simulations of the restricted primitive model. Semi-quantitative agreement is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

radius of macroion

f :

scattering factor (SAXS)

f’ :

real part of scattering factor f

f″ :

imaginary part of scattering factor f

I(q) :

scattering intensity of solution

I 0 (q) :

scattering intensity of isolated molecule

L :

length of rod-like molecule

n(r) :

radial distribution of counterions around rod

q :

magnitude of scattering vector

R M :

Manning radius (Eq. (5))

R 0 :

cell radius

RPM :

restricted primitive model

S(q) :

structure factor describing interaction between solute molecules

α:

cosin of angle between long axis of rod-like molecule and scattering vector q

β :

integration constant of cell model (Eq. (4))

ϕ :

osmotic coefficient

ϕ :

osmotic coefficient in Manning limit

κ :

screening constant

λ B :

Bjerrum length (Eq. (2))

Π :

osmotic pressure

ξ :

charge parameter (Eq. (1))

References

  1. Förster S, Schmidt M (1995) Adv Polym Sci 120:51

    Google Scholar 

  2. Schmitz KS (1993) Macroions in Solution and Colloid Suspension. VCH, New York

    Google Scholar 

  3. Förster S, Schmidt M, Antonietti M (1990) Polymer 31:781

    Google Scholar 

  4. MacCallum MJ, Vincent CA (1987) Polymer Electrolyte Reviews, Elsevier, London

    Google Scholar 

  5. Barrat J-L, Joanny J-F (1996) Theory of polyelectrolyte solutions. In: Prigogine I, Rice SA (eds) Advances on Chemical Physics 94, Wiley, p 1

    Google Scholar 

  6. Kassapidou K, Jesse W, Kuil ME, Lapp A, Egelhaaf S, van der Maarel JRC (1997) Macromolecules 30:2671

    Google Scholar 

  7. Raspaud E, da Conceicao M, Livolant F (2000) Phys Rev Lett 84:2533

    Google Scholar 

  8. Lee CC, Chu S-G, Berry GC (1983) J Polym Sci Polym Phys Ed 21:1573

    Google Scholar 

  9. Metzger Cotts P, Berry GC (1983) J Polym Sci Polym Phys Ed 21:1255

    Google Scholar 

  10. Rau IU, Rehahn M (1993) Makromol Chem Phys 194:2225

    Google Scholar 

  11. Rau IU, Rehahn M (1993) Polymer 34:2889

    Google Scholar 

  12. Rau IU, Rehahn M (1994) Acta Polym 45:3

    Google Scholar 

  13. Brodowski G, Horvath A, Ballauff M, Rehahn M (1996) Macromolecules 29:6962

    Google Scholar 

  14. Wittemann M, Rehahn M (1998) J Chem Soc Chem Commun 623

    Google Scholar 

  15. Rulkens R, Schulze M, Wegner G (1994) Macromol Rapid Commun 15:669

    Google Scholar 

  16. Vanhee S, Rulkens R, Lehmann U, Rosenauer C, Schulze M, Köhler W, Wegner G (1996) Macromolecules 29:5136

    Google Scholar 

  17. Ballauff M (1993) Mater Sci Tech 12:213

    Google Scholar 

  18. Ballauff M (1989) Angew Chem 101:261

    Google Scholar 

  19. Rehahn M, Schlüter A-D, Wegner G, Feast WJ (1989) Polymer 30:1060

    Google Scholar 

  20. Rehahn M, Schlüter A-D, Wegner G (1990) Makromol Chem Phys 191:1991

    Google Scholar 

  21. Schlüter A-D, Wegner G (1993) Acta Polym 44:59

    Google Scholar 

  22. Manning GS (1969) J Chem Phys 51:924, 934,3249

    Google Scholar 

  23. Oosawa F (1971) Polyelectrolytes, Marcel Dekker, New York

    Google Scholar 

  24. Katchalsky A (1971) Pure Appl. Chem. 26:327

    Google Scholar 

  25. Deserno, M, Ph.D. thesis, Universität Mainz, 2000, http://archimed.uni-mainz.de/pub/2000/0018/;

    Google Scholar 

  26. Deserno, M, Holm C (2001) Cell model and Poisson-Boltzmann theory: a brief introduction. In: Holm C, Kekicheff P, Podgornik R (eds) Electrostatic Effects in Soft Matter and Biophysics. Kluwer, Dordrecht, p 27

    Google Scholar 

  27. Deserno, M, Holm C, Kremer K (2000) Molecular dynamics simulations of the cylindrical cell model. In: Radeva T (ed) Physical Chemistry of Polyelectrolytes. Marcel Dekker, New York, pp 26

    Google Scholar 

  28. Fuoss RM, Katchalsky A, Lifson S (1951) Proc Natl Acad Sci USA 37:579; Alfrey T, Berg PW, Morawetz H (1951) J Polym Sci 7:543

    Google Scholar 

  29. Le Bret M, Zimm BH (1984) Biopolymers 23:287

    Google Scholar 

  30. Deserno M, May S, Holm C (2000) Macromolecules 33:199

    Google Scholar 

  31. Marcus RA (1955) J Chem Phys 23:1057

    Google Scholar 

  32. Barbosa MC, Deserno M, Holm C (2000) Europhys Lett 52:80

    Google Scholar 

  33. Borukhov I, Andelman D, Orland H (1997) Phys Rev Lett 79:435

    Google Scholar 

  34. Lue L, Zoeller N, Blankschtein D (1999) Langmuir 15:3726

    Google Scholar 

  35. Nordholm S (1984) Chem Phys Lett 105:302; Penfold R, Nordholm S, Jönsson B, Woodward CE (1990) J Chem Phys 92:1915

    Google Scholar 

  36. Groot R (1990) J Chem Phys 95:9191; Diel A, Barbosa MC, Tamashiro MN, Levin Y (1999) Physica A 274:433

    Google Scholar 

  37. Gonzales-Tovar E, Lozada-Cassou M, Henderson D (1985) J Chem Phys 83:361; Das T, Bratko D, Bhuyan LB, Outhwaite CW (1997) J Chem Phys 107:9197; Kjellander R (2001) Distribution function theory of electrolytes and electrical double layers. In: Holm C, Kekicheff P, Podgornik R (eds) Electrostatic Effects in Soft Matter and Biophysics. Kluwer, Dordrecht, p. 317

    Google Scholar 

  38. Deserno M, Jimenez-Angeles F, Holm C, Lozada-Cassou M (2001) J Phys Chem B, 105:10983; Messina R, Gonzalez Tovar E, Lozada-Cassou M, Holm C (2002) Europhys Lett 60:383

    Google Scholar 

  39. Kuhn P, Levin Y, Barbosa MC (1998) Macromolecules 31:8347;Levin Y, Barbosa MC (1997) J Phys II France 7:37

    Google Scholar 

  40. Nyquist RM, Ha B-Y, Liu A (1999) Macromolecules 32:3481

    Google Scholar 

  41. O’Konski CT ed (1978) Molecular Electro-Optics, part 2. Marcel Dekker, New York

    Google Scholar 

  42. Jennings BR (ed) (1979) Electro-Optics and Dielectrics of Macromolecules and Colloids. Plenum Press, New York

    Google Scholar 

  43. Krause S (ed) (1981) Molecular Electro-Optics. Plenum Press, New York

    Google Scholar 

  44. Fredericq E, Houssier C (1973) Electric Dichroism and Electric Birefringence. Clarendon Press, Oxford

    Google Scholar 

  45. Yamaoka K, Ueda K (1980) J Phys Chem 84:1422.

    Google Scholar 

  46. Schwarz G (1959) Z Phys 145:563; Z Phys Chem 19:286

    Google Scholar 

  47. Mandel M (1961) Mol Phys 4:489.

    Google Scholar 

  48. Oosawa F (1970) Biopolymers 9:677

    Google Scholar 

  49. Lachenmayer K (2000) PhD. Thesis, Stuttgart.

    Google Scholar 

  50. Lachenmayer K, Oppermann W (2002) J Chem Phys 116:392.

    Google Scholar 

  51. O’Konski CT, Krause S (1970) J Phys Chem 74:3243.

    Google Scholar 

  52. van Dijk W, van der Touw F, Mandel M (1981) Macromolecules 14:792.

    Google Scholar 

  53. Hogan M, Dattagupta N, Crothers DM (1978) Biochemistry 75:195

    Google Scholar 

  54. Rau DC, Bloomfield VA (1979) Biopolymers 18:2783

    Google Scholar 

  55. Fixman M, Jagannathan S (1981) J Chem Phys 75:4048

    Google Scholar 

  56. Yoshida M, Kikuchi K, Maekawa T, Watanabe H (1992) J Phys Chem 96:2365

    Google Scholar 

  57. Oppermann W (1988) Macromol Chem 189:927; 189:2125

    Google Scholar 

  58. Wandrey Ch, Hunkeler D, Wendler U, Jaeger W (2000) Macromolecules 33:7136

    Google Scholar 

  59. Blaul J, Wittemann M, Ballauff M, Rehahn M (2000) J Phys Chem B 104:7077

    Google Scholar 

  60. Deserno M, Holm C, Blaul J, Ballauff M, Rehahn M (2001) Eur Phys J E 5:97

    Google Scholar 

  61. Deserno M, Holm C (2002) Molecular Physics 100:2941

    Google Scholar 

  62. Neu J (1999) Phys Rev Lett 82:1072

    Google Scholar 

  63. Sader J, Chan DY (1999) J Colloid Interface Sci 213:268

    Google Scholar 

  64. Trizac E, Raimbault JL (1999) Phys Rev E 60:6530

    Google Scholar 

  65. Nilsson LG, Guldbrand L, Nordenskiöld L (1991) Mol Phys 72:177

    Google Scholar 

  66. Lyubartsev AP, Nordenskiöld L (1997) J Phys Chem 101:4335

    Google Scholar 

  67. Gronbech-Jensen N, Mashl RJ, Bruinsma RF, Gelbart WM (1997) Phys Rev Lett 78:2477

    Google Scholar 

  68. Lyubartsev AP, Tang JX, Janmey PA, Nordenskiöld L (1998) Phys Rev Lett 81:5465

    Google Scholar 

  69. Auer H, Alexandrowicz Z (1969) Biopolymers 8:1

    Google Scholar 

  70. Oppermann W, Wagner M (1999) Langmuir 15:4089

    Google Scholar 

  71. Wandrey C (1997) Polyelektrolyte—Makromolekulare Parameter und Elektrolytverhalten. Cuvillier, Göttingen

    Google Scholar 

  72. Guilleaume B, Blaul J, Wittemann M, Rehahn M, Ballauff M (2002) Eur Phys J E 8:299; Guilleaume B, Ballauff M, Goerigk G, Wittemann M, Rehahn M (2001) Colloid Polym Sci 279:829

    Google Scholar 

  73. Stuhrmann HB Adv Polym Sci (1985) 67:123

    Google Scholar 

  74. Kassapidou K, Jesse W, Kuil M E, Lapp A, Egelhaaf S, van der Maarel JRC (1997) Macromolecules 30:2671

    Google Scholar 

  75. van der Maarel JRC, Kassapidou K (1998) Macromolecules 31:5734

    Google Scholar 

  76. van der Maarel JRC, Groot LCA, Mandel M, Jesse W, Jannink G, Rodriguez V (1992) J Phys II France 2:109

    Google Scholar 

  77. Zakharova SS, Engelhaaf SU, Bhuiyan LB, Outhwaite CW, Bratko D., van der Maarel, JRC (1999) J Chem Phys 111:10706

    Google Scholar 

  78. Wu CF, Chen SH, Shih LB, Lin JS (1988) Phys Rev Lett 61:645

    Google Scholar 

  79. Chang SL, Chen SH, Rill RL, Lin JS (1990) J Phys Chem 94:8025

    Google Scholar 

  80. Maier EE, Krause R, Deggelmann M, Hagenbüchle MM, Weber R, Fraden S (1992) Macromolecules 25:1125

    Google Scholar 

Download references

Acknowledgment

The authors are indebted to the Deutsche Forschungsgemeinschaft for generous support within the Schwerpunkt “Polyelektrolyte”. C. Holm acknowledges M. Deserno for intensive collaboration on the presented material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ballauff .

Editor information

Manfred Schmidt

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Holm, C., Rehahn, M., Oppermann, W., Ballauff, M. Stiff-Chain Polyelectrolytes. In: Schmidt, M. (eds) Polyelectrolytes with Defined Molecular Architecture II. Advances in Polymer Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b11347

Download citation

  • DOI: https://doi.org/10.1007/b11347

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00556-8

  • Online ISBN: 978-3-540-36463-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics