Skip to main content

SOLENOID EXAMPLES, HTS MAGNETS & CONCLUDING REMARKS

  • Chapter
  • First Online:
  • 2488 Accesses

This chapter consists of three segments. The first segment presents solenoid magnet EXAMPLES, each accompanied by a study section, Questions/Answers (Q/A). The next segment discusses HTS, magnet applications and outlook. The chapter ends with brief concluding remarks.

The four solenoid magnet EXAMPLES described and studied here are selected not because of their especial importance nor uniqueness-no magnet system is unique or, perhaps to some, every magnet is unique. The selection stems chiefly from the author’s familiarity with these magnets. In the Q/A section that follows each description, some of the design and operation issues, covered in the previous seven chapters, CHAPTERS 2-8, are studied and revisited.

Here, we emphasize once again our basic philosophy, first stated in CHAPTER 1, that in any problem solving that requires numerical solution, the very first step is to get ballpark .gures, computed on a simple model amenable to numerical solution. The ballpark .gures quickly tell the magnet designer if the magnet is on the right track. This exercise is important with any magnet, simple or complex. An “innovative” magnet idea often begins with an individual. To assess whether the idea is realistic and worth pursuing further with colleagues or even forming a design team, the initiator must first compute ballpark .gures of key design and operation parameters, those covered in CHAPTERS 2-8, e.g., from simple parameters like total ampere turns, overall operating current density, size and weight of the magnet, total length of conductor, to more intricate ones like stability and protection, forces, and cryogenic requirements. The key word here is ballpark: in the later stages of a magnet project, specialists in the design team, armed with sophisticated codes, will compute accurate parameter values. Leave the exact values to the specialists, but be prepared to verify that theirs indeed fall within the range of independently computed ballpark .gures. The author hopes that after having studied CHAPTERS 2-8, the reader-a specialist in whatever area, electromagnetic fields, stresses, cryogenics, or even materials-will be capable of handling most of the questions included in the four magnet EXAMPLES presented below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. John R. Miller and Tom Painter (SCH presentations, April and August 2005).

    Google Scholar 

  2. Andrey V. Gavrilin (SCH presentation, April 2005).

    Google Scholar 

  3. Mark D. Bird (SCH presentation, August 2005).

    Google Scholar 

  4. Iain Dixson (SCH presentation, August 2005).

    Google Scholar 

  5. Yukikazu Iwasa and Haigun Lee, “‘Electromaglev’—magnetic levitation of a super-conducting disk with a DC field generated by electromagnets: Part 1 Theoretical and experimental results on operating modes, lift-to-weight ratio, and suspension stiffness,” Cryogenics 37, 807 (1997).

    Google Scholar 

  6. Haigun Lee, Makoto Tsuda, and Yukikazu Iwasa, “‘Electromaglev’ ‘active-maglev’—magnetic levitation of a superconducting disk with a DC field generated by electromagnets: Part 2 Theoretical and experimental results on lift-to-weight ratio, and stiffness,” Cryogenics 38, 419 (1998).

    Google Scholar 

  7. Makoto Tsuda, Haigun Lee, So Noguchi, and Yukikazu Iwasa, “‘Electromaglev’ (‘active-maglev’)—magnetic levitation of a superconducting disk with a DC field generated by electromagnets: Part 4 Theoretical and experimental results on supercurrent distributions in field-cooled YBCO disks,” Cryogenics 39, 893 (1999).

    Google Scholar 

  8. Y. Iwasa, H. Lee, M. Tsuda, M. Murakami, T. Miyamoto, K. Sawa, K. Nishi, H. Fujimoto, and K. Nagashima, “Electromaglev—levitation data for single and multiple bulk YBCO disks,” IEEE Trans. Appl. Supercond. 9, 984 (1999).

    Google Scholar 

  9. Stephen Hawking, A Brief History of Time (Bantam Books, New York, 1988).

    Google Scholar 

  10. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, P.B. van Dover, G.W. Kammlott, R.A. Fastnacht, and H.D. Keith, “High critical currents in Y-Ba-Cu-O superconductors,” Appl. Phys. Lett. 52, 2074 (1988).

    Google Scholar 

  11. K. Salama, V. Selvamanickam, L. Gao, and K. Sun, “High current density in bulk YBa2Cu3O x superconductor,” Appl. Phys. Lett. 54, 2352 (1989).

    Google Scholar 

  12. S. Gotoh, M. Murakami, H. Fujimoto, and N. Koshizuka, “Magnetic properties of superconducting YBa2Cu3O x permanent magnets prepared by the melt process,” J. Appl. Phys. 6, 2404 (1992).

    Google Scholar 

  13. N. Sakai, K. Ogasawara, K. Inoue, D. Ishihara, and M. Murakami, “Fabrication of melt-processed RE-Ba-Cu-O bulk superconductors with high densities,” IEEE Trans. Appl. Supercond. 11, 3509 (2001).

    Google Scholar 

  14. Masaru Tomita and Masato Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature 421, 517 (2003).

    Google Scholar 

  15. Yukikazu Iwasa, Seung-yong Hahn, Masaru Tomita, Haigun Lee, and Juan Bascuñán, “A ‘persistent-mode’ magnet comprised of YBCO annuli,” IEEE Trans. Appl. Superconduc. 15, 2352 (2005).

    Google Scholar 

  16. M. Konishi, S. Hahakura, K. Ohmatsu, K. Hayashi, K. Yasuda, “HoBCO thin films for SN transition type fault current limiter,” Physica C 412–414, 1056 (2004).

    Google Scholar 

  17. Marty Rupitch (personal communication, 2007).

    Google Scholar 

  18. Y. Sakai, K. Inoue, T. Asano, and H. Maeda, “Development of a high strength, high conductivity copper-silver alloy for pulsed magnets,” IEEE Trans. Magn. 28, 888 (1992).

    Google Scholar 

  19. H. Fujishiro and S. Kobayashi, “Thermal conductivity, thermal diffusivity and thermoelectric power in Sam-based bulk superconductors,” IEEE Trans. Appl. Supercond. 12, 1124 (2002).

    Google Scholar 

  20. Hiroyuki Fujishiro, Tetsuo Oka, Kazuya Yokoyama, Masahiko Kaneyama, and Koshichi Noto, “Flux motion studies by means of temperature measurement in magnetizing processes for HTSC bulks,” IEEE Trans. Appl. Supercond. 14, 1054 (2004).

    Google Scholar 

  21. K. Okuno, K. Sawa and Y. Iwasa, “Performance of the HTS bulk magnet in cryocooler system with cyclic temperature variation,” Physica C: Supercond. 426–431, 809 (2005).

    Google Scholar 

  22. N. Koshizuka, “R&D of superconducting bearing technologies for flywheel energy storage systems,” Advances in Superconductivity XVIII (Elsevier, 2006), 1103.

    Google Scholar 

  23. Christopher Rey (private communication, 2007).

    Google Scholar 

Papers Cited in Table 9.7: Electric Power: General Overview

  1. Mario Rabinowitz, “The Electric Power Research Institute's role in applying superconductivity to future utility systems,” IEEE Trans. Magn. MAG-11, 105 (1975).

    Google Scholar 

  2. Paul M. Grant, “Superconductivity and electric power: promises, promises … past, present and future,” IEEE Trans. Appl. Superconduc. 7, 112 (1997).

    Google Scholar 

  3. William V. Hassenzahl, “Superconductivity, an enabling technology for 21st century power systems?,” IEEE Trans. Appl. Superconduc. 11, 1447 (2001).

    Google Scholar 

  4. Donald U. Gubser, “Superconductivity: an emerging power-dense energy-efficient technology,” IEEE Trans. Appl. Superconduc. 14, 2037 (2004).

    Google Scholar 

  5. Osami Tsukamoto, “Roads for HTS power applications to go into the real world: cost issues and technical issues,” Cryogenics 45, 3 (2005).

    Google Scholar 

  6. Alex P. Malozemoff, “The new generation of superconductor equipment for the electric power grid,” IEEE Trans. Appl. Superconduc. 16, 54 (2006).

    Google Scholar 

Fusion—Tore Supra

  1. B. Turck, “Six years of operating experience with Tore Supra, the largest Tokamak with superconducting coils,” IEEE Trans. Magn. 32, 2264 (1996).

    Google Scholar 

  2. J.L. Duchateau and B. Turck, “Application of superfluid helium cooling techniques to the toroidal field systems of tokamaks,” IEEE Trans. Appl. Superconduc. 9, 157 (1999).

    Google Scholar 

Fusion—Large Helical Device (LHD)

  1. T. Satow, N. Yanagi, S. Imagawa, H. Tamura, K. Takahata, T. Mito, H. Chikaraishi, S. Yamada, A. Nishimura, R. Maekawa, A. Iwamoto, N. Inoue, Y. Nakamura, K. Watanabe, H. Yamada, A. Komori, I. Ohtake, M. Iima, S. Satoh, O. Motojima, and LHD Group, “Completion and trial operation of the superconducting magnets for the Large Helical Device,” IEEE Trans. Appl. Superconduc. 9, 1008 (1999).

    Google Scholar 

  2. S. Imagawa, N. Yanagi, H. Sekiguchi, T. Mito, and O. Motojima, “Performance of the helical coil for the Large Helical Device in six years' operation,” IEEE Trans. Appl. Superconduc. 14, 629 (2004).

    Google Scholar 

  3. S. Imagawa, T. Obana, S. Hamaguchi, N. Yanagi, T. Mito, S. Moriuchi, H. Sekiguchi, K. Ooba, T. Okamura, A. Komori, and O. Motojima, “Results of the excitation test of the LHD helical coils cooled by subcooled helium,” IEEE Trans. Appl. Superconduc. 18, 455 (2008).

    Google Scholar 

Fusion—EAST

  1. Peide Weng, Qiuliang Wang, Ping Yuan, Qiaogen Zhou, and Zian Zhu, “Recent development of magnet technology in China: Large devices for fusion and other applications,” IEEE Trans. Appl. Superconduc. 16, 731 (2006).

    Google Scholar 

Fusion—KSTAR

  1. W. Chung, Y.B. Chang, J.H. Kim, J.S. Kim, K. Kim, M.K. Kim, S.B. Kim, Y.J. Kim, S.I. Lee, S.Y. Lee, Y.H. Lee, H. Park, K.R. Park, C. Winter, C.S. Yoon, and KSTAR Magnet Team, “The test facility for the KSTAR superconducting magnets at SAIT,” IEEE Trans. Appl. Superconduc. 10, 645 (2000).

    Google Scholar 

  2. K. Park, W. Chung, S. Baek, B. Lim, S.J. Lee, H. Park, Y. Chu, S. Lee, K.P. Kim, J. Joo, K. Lee, D. Lee, S. Ahn, Y.K. Oh, K. Kim, J.S. Bak, and G.S. Lee, “Status of the KSTAR PF6 and PF7 coil development,” IEEE Trans. Appl. Superconduc. 15, 1375 (2005).

    Google Scholar 

  3. S.H. Park, W. Chung, H.J. Lee, W.S. Han, K.M. Moon, W.W. Park, J.S. Kim, H. Yonekawa, Y. Chu, K.W. Cho, K.R. Park, W.C. Kim, Y.K. Oh, and J.S. Bak, “Stability of superconducting magnet for KSTAR,” IEEE Trans. Appl. Superconduc. 18, 447 (2008).

    Google Scholar 

Fusion—Wendelstein 7-X (W7-X)

  1. T. Schild, D. Bouziat, Ph. Bredy, G. Dispau, A. Donati, Ph. Fazilleau, L. Genini, M. Jacquemet, B. Levesy, F. Molinié, J. Sapper, C. Walter, M. Wanner, and L. Wegener, “Overview of a new test facility for the W7X coils acceptance tests,” IEEE Trans. Appl. Superconduc. 12, 639 (2002).

    Google Scholar 

  2. L. Wegener, W. Gardebrecht, R. Holzthum, N. Jaksic, F. Kerl, J. Sapper, and M. Wanner, “Status of the construction of the W7-X magnet system,” IEEE Trans. Appl. Superconduc. 12, 653 (2002).

    Google Scholar 

  3. Juergen Baldzuhn, Hartmut Ehmler, Laurent Genini, Kerstan Hertel, Alf Hoelting, Carlo Sborchia, and Thierry Schild, “Cold tests of the superconducting coils for the Stellarator W7-X,” IEEE Trans. Appl. Superconduc. 18, 509 (2008).

    Google Scholar 

Fusion—ITER

  1. C.D. Henning and J.R. Miller, “Magnet systems for the International Thermonuclear Experimental Reactor,” IEEE Trans. Magn. MAG-25, 1469 (1989).

    Google Scholar 

  2. D. Bruce Montgomery, Richard J. Thome, “US perspective on the ITER magnetics R and D program,” IEEE Trans. Appl. Superconduc. 3, 342 (1993).

    Google Scholar 

  3. S. Shimamoto, K. Hamada, T. Kato, H. Nakajima, T. Isono, T. Hiyama, M. Oshikiri, K. Kawano, M. Sugimoto, N. Koizumi, K. Nunoya, S. Seki, H. Hanawa, H. Wakabayashi, K. Nishida, T. Honda, H. Matsui, Y. Uno, K. Takano, T. Ando, M. Nishi, Y. Takahashi, S. Sekiguchi, T. Ohuchi, F. Tajiri, J. Okayama, Y. Takaya, T. Kawasaki, K. Imahashi, K. Ohtsu, and H. Tsuji, “Construction of ITER common test facility for CS model coil,” IEEE Trans. Magn. 32, 3049 (1996).

    Google Scholar 

  4. A. della Corte, M.V. Ricci, M. Spadoni, G. Bevilacqua, R.K. Maix, E. Salpietro, H. Krauth, M. Thoener, S. Conti, R. Garre, S. Rossi, A. Laurenti, P. Gagliardi, and N. Valle, “EU conductor development for ITER CS and TF Model Coils,” IEEE Trans. Appl. Superconduc. 7, 763 (1997).

    Google Scholar 

  5. Arend Nijhuis, Niels H.W. Noordman, Oleg Shevchenko, Herman H.J. ten Kate, Neil Mitchell, “Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading. III. Mechanical properties,” IEEE Trans. Appl. Superconduc. 9, 165 (1999).

    Google Scholar 

  6. D. Ciazynski, P. Decool, M. Rubino, J.M. Verger, N. Valle, R. Maix, “Fabrication of the first European full-size joint sample for ITER,” IEEE Trans. Appl. Superconduc. 9, 648 (1999).

    Google Scholar 

  7. D. Bessette, N. Mitchell, E. Zapretilina, and H. Takigami, “Conductors of the ITER magnets,” IEEE Trans. Appl. Superconduc. 11, 1550 (2001).

    Google Scholar 

  8. A.M. Fuchs, B. Blau, P. Bruzzone, G. Vecsey, M. Vogel, “Facility status and results on ITER full-size conductor tests in SULTAN,” IEEE Trans. Appl. Superconduc. 11, 2022 (2001).

    Google Scholar 

  9. T. Ando, T. Isono, T. Kato, N. Koizumi, K. Okuno, K. Matsui, N. Martovetsky, Y. Nunoya, M. Ricci, Y. Takahashi, and H. Tsuji, “Pulsed operation test results of the ITER-CS model coil and CS insert,” IEEE Trans. Appl. Superconduc. 12, 496 (2002).

    Google Scholar 

  10. N. Cheverev, V. Glukhikh, O. Filatov, V. Belykov, V. Muratov, S. Egorov, I. Rodin, A. Malkov, M. Sukhanova, S. Gavrilov, V. Krylov, B. Mudugin, N. Bondarchouk, V. Yakubovsky, A. Cherdakov, M. Mikhailov, Yu. Konstantinov, Yu. Sokolov, G. Yakovleva, S. Peregudov, P. Chaika, V. Sytnikov, A. Rychagov, A. Taran, A. Shikov, V. Pantcyrny, A. Vorobieva, E. Dergunova, I. Abdukhanov, K. Mareev, and N. Grysnov, “ITER TF conductor insert coil manufacture,” IEEE Trans. Appl. Superconduc. 11, 548 (2002).

    Google Scholar 

  11. R. Heller, D. Ciazynski, J.L. Duchateau, V. Marchese, L. Savoldi-Richard, and R. Zanino, “Evaluation of the current sharing temperature of the ITER Toroidal Field model coil,” IEEE Trans. Appl. Superconduc. 13, 1447 (2003).

    Google Scholar 

  12. Kiyoshi Okuno, Hideo Nakajima, and Norikiyo Koizumi, “From CS and TF model coils to ITER: lessons learnt and further progress,” IEEE Trans. Appl. Superconduc. 16, 850 (2006).

    Google Scholar 

  13. L. Chiesa, M. Takayasu, J.V. Minervini, C. Gung, P.C. Michael, V. Fishman, and P.H. Titus, “Experimental studies of transverse stress effects on the critical current of a Sub-Sized Nb3Sn superconducting cable,” IEEE Trans. Appl. Superconduc. 17, 1386 (2007).

    Google Scholar 

  14. P. Bruzzone, B. Stepanov, R. Wesche, E. Salpietro, A. Vostner, K. Okuno, T. Isono, Y. Takahashi, Hyoung Chan Kim, Keeman Kim, A.K. Shikov, and V.E. Sytnikov, “Results of a new generation of ITER TF conductor samples in SULTAN,” IEEE Trans. Appl. Superconduc. 18, 459 (2008).

    Google Scholar 

  15. K. Seo, A. Nishimura, Y. Hishinuma, K. Nakamura, T. Takao, G. Nishijima, K. Watanabe, and K. Katagiri, “Mitigation of critical current degradation in mechanically loaded Nb3Sn superconducting multi-strand cable,” IEEE Trans. Appl. Superconduc. 18, 491 (2008).

    Google Scholar 

Fusion—LDX [LTS/HTS]

  1. Philip C. Michael, Alexander Zhukovsky, Bradford A. Smith, Joel H. Schultz, Alexi Radovinsky, Joseph V. Minervini, K. Peter Hwang, and Gregory J. Naumovich, “Fabrication and test of the LDX levitation coil,” IEEE Trans. Appl. Superconduc. 13, 1620 (2003).

    Google Scholar 

  2. Philip C. Michael, Darren T. Garnier, Alexi Radovinsky, Igor Rodin, Vladimir Ivkin, Michael E. Mauel, Valery Korsunsky, Sergey Egorov, Alex Zhukovsky, and Jay Kesner, “Quench detection for the Levitated Dipole Experiment (LDX) charging coil,” IEEE Trans. Appl. Superconduc. 17, 2482 (2007).

    Google Scholar 

Generator [LTS]

  1. J.L. Smith, Jr., J.L. Kirtley, Jr., P. Thullen, “Superconducting rotating machines,” IEEE Trans. Magn. MAG-11, 128 (1975).

    Google Scholar 

  2. C.E. Oberly, “Air Force application of lightweight superconducting machinery,” IEEE Trans. Magn. MAG-13, 260 (1977).

    Google Scholar 

  3. J.L. Smith, Jr., G.L. Wilson, J.L. Kirtley, Jr., T.A. Keim, “Results from the MIT-EPRI 3-MVA superconducting alternator,” IEEE Trans. Magn. 13, 751 (1977).

    Google Scholar 

  4. A.D. Appleton, J.S.H. Ross, J. Bumby, A.J. Mitcham, “Superconducting A.C. generators: Progress on the design of a 1300 MW, 3000rev/min generator,” IEEE Trans. Magn. MAG-13, 770 (1977).

    Google Scholar 

Generator [HTS]

  1. P. Tixador, Y. Brunet, P. Vedrine, Y. Laumond, J.L. Sabrie, “Electrical tests on a fully superconducting synchronous machine,” IEEE Trans. Magn. 27, 2256 (1991).

    Google Scholar 

  2. T. Suryanarayana, J.L. Bhattacharya, K.S.N. Raju, K.A. Durga Prasad, “Development and performance testing of a 200 kVA damperless superconducting generator,” IEEE Trans. Energy Conversion 12, 330 (1997).

    Google Scholar 

  3. Tanzo Nitta, Takao Okada, Yasuyuki Shirai, Takuya Kishida, Yoshihiro Ogawa, Hiroshi Hasegawa, Kouzou Takagi, and Hisakazu Matsumoto, “Experimental studies on power system stability of a superconducting generator with high response excitation,” IEEE Trans. Power Sys. 12, 906 (1997).

    Google Scholar 

  4. K. Ueda, R. Shiobara, M. Takahashi, T. Ageta, “Measurement and analysis of 70 MW superconducting generator constants,” IEEE Trans. Appl. Superconduc. 9, 1193 (1999).

    Google Scholar 

  5. Sung-Hoon Kim, Woo-Seok Kim, Song-yop Hahn and Gueesoo Cha, “Development and test of an HTS induction generator,” IEEE Trans. Magn. 11, 1968 (2001).

    Google Scholar 

  6. M. Frank, J. Frauenhofer, P. van Hasselt, W. Nick, H.-W. Neumueller, and G. Nerowski, “Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations,” IEEE Trans. Appl. Superconduc. 13, 2120 (2003).

    Google Scholar 

  7. Paul N. Barnes, Gregory L. Rhoads, Justin C. Tolliver, Michael D. Sumption, and Kevin W. Schmaeman, “Compact, lightweight, superconducting power generators,” IEEE Trans. Magn. 41, 268 (2005).

    Google Scholar 

  8. Maitham K. Al-Mosawi, C. Beduz, and Y. Yang, “Construction of a 100 kVA high temperature superconducting synchronous generator,” IEEE Trans. Appl. Superconduc. 15, 2182 (2005).

    Google Scholar 

  9. S.K. Baik, M.H. Sohn, E.Y. Lee, Y.K. Kwon, Y.S. Jo, T.S. Moon, H.J. Park, and Y.C. Kim, “Design considerations for 1 MW class HTS synchronous motor,” IEEE Trans. Appl. Superconduc. 15, 2202 (2005).

    Google Scholar 

  10. L. Li, T. Zhang, W. Wang, J. Alexander, X. Huang, K. Sivasubramaniam, E.T. Laskaris, J.W. Bray, and J.M. Fogarty, “Quench test of HTS coils for generator application at GE,” IEEE Trans. Appl. Superconduc. 17, 1575 (2007).

    Google Scholar 

  11. S.S. Kalsi, D. Madura, G. Snitchler, M. Ross, J. Voccio, and M. Ingram, “Discussion of test results of a superconductor synchronous condenser on a utility grid,” IEEE Trans. Appl. Superconduc. 17, 2026 (2007).

    Google Scholar 

  12. Wolfgang Nick, Michael Frank, Gunar Klaus, Joachim Frauenhofer, and Heinz-Werner Neumüller, “Operational experience with the world’s first 3600 rpm 4 MVA generator at Siemens,” IEEE Trans. Appl. Superconduc. 17, 2030 (2007).

    Google Scholar 

SMES/Flywheel [LTS]

  1. Roger W. Boom and Harold A. Peterson, “Superconductive energy storage for power systems,” IEEE Trans. Magn. MAG-8, 751 (1972).

    Google Scholar 

  2. J.D. Rogers, H.J. Boenig, J.C. Bronson, D.B. Colyer, W.V. Hassenzahl, R.D. Turner, and R.I. Schermer, “30-MJ superconducting magnetic energy storage (SMES) unit for stabilizing an electric transmission system,” IEEE Trans. Magn. MAG-15, 820 (1979).

    Google Scholar 

  3. T. Shintomi, M. Masuda, T. Ishikawa, S. Akita, T. Tanaka and H. Kaminosono, “Experimental study of power system stabilization by superconducting magnetic energy storage,” IEEE Trans. Magn. MAG-19, 350 (1983).

    Google Scholar 

  4. T. Onishi, H. Tateishi, K. Komuro, K. Koyama, M. Takeda, T. Ichihara, “Energy transfer experiments between 3 MJ and 4 MJ pulsed superconducting magnets,” IEEE Trans. Magn. MAG-21, 1107 (1985).

    Google Scholar 

  5. Shinichi Nomura, Koji Kasuya, Norihiro Tanaka, Kenji Tsuboi, Hiroaki Tsutsui, Shunji Tsuji-Iio, and Ryuichi Shimada, “Experimental results of a 7-T force-balanced helical coil for large-scale SMES,” IEEE Trans. Appl. Superconduc. 18, 701 (2008).

    Google Scholar 

  6. A. Kawagoe, S. Tsukuda, F. Sumiyoshi, T. Mito, H. Chikaraishi, T. Baba, M. Yokoto, H. Ogawa, T. Hemmi, R. Abe, A. Nakamura, K. Okumura, A. Kuge, and M. Iwakuma, “AC losses in a conduction-cooled LTS pulse coil with stored energy of 1 MJ for UPS-SMES as protection from momentary voltage drops,” IEEE Trans. Appl. Superconduc. 18, 789 (2008).

    Google Scholar 

SMES/Flywheel [HTS]

  1. P. Stoye, G. Fuchs, W. Gawalek, P. Görnert, A. Gladun, “Static forces in a super-conducting magnet bearing,” IEEE Trans. Magn. 31, 4220 (1995).

    Google Scholar 

  2. P. Tixador, P. Hiebel, Y. Brunet, X. Chaud, P. Gautier-Picard, “Hybrid superconducting magnetic suspensions,” IEEE Trans. Magn. 32, 2578 (1996).

    Google Scholar 

  3. S.S. Kalsi, D. Aized, B. Conner, G. Snitchler, J. Campbell, R.E. Schwall, J. Kellers, Th. Stephanblome, A. Tromm, P. Winn, “HTS SMES magnet design and test results,” IEEE Trans. Appl. Superconduc. 7, 971 (1997).

    Google Scholar 

  4. S. Ohashi, S. Tamura, and K. Hirane, “Levitation characteristics of the HTSC-permanent magnet hybrid flywheel system,” IEEE Trans. Appl. Superconduc. 9, 988 (1999).

    Google Scholar 

  5. Y. Miyagawa, H. Kameno, R. Takahata and H. Ueyama, “A 0.5 kWh flywheel energy storage system using a high-Tc superconducting magnetic bearing,” IEEE Trans. Appl. Superconduc. 9, 996 (1999).

    Google Scholar 

  6. Shigeo Nagaya, Naoji Kashima, Masaharu Minami, Hiroshi Kawashima and Shigeru Unisuga, “Study on high temperature superconducting magnetic bearing for 10 kWh flywheel energy storage system,” IEEE Trans. Appl. Superconduc. 11, 1649 (2001).

    Google Scholar 

  7. J.R. Fang, L.Z. Lin, L.G. Yan, and L.Y. Xiao, “A new flywheel energy storage system using hybrid superconducting magnetic bearings, IEEE Trans. Appl. Superconduc. 11, 1657 (2001).

    Google Scholar 

  8. Yevgeniy Postrekhin, Ki Bui Ma and Wei-Kan Chu, “Drag torque in high Tc superconducting magnetic bearings with multi-piece superconductors in low speed high load applications,” IEEE Trans. Appl. Superconduc. 11, 1661 (2001).

    Google Scholar 

  9. Thomas M. Mulcahy, John R. Hull, Kenneth L. Uherka, Robert G. Abboud, John J. Juna, “Test results of 2-kWh flywheel using passive PM and HTS bearings,” IEEE Trans. Appl. Superconduc. 11, 1729 (2001).

    Google Scholar 

  10. Amit Rastogi, David Ruiz Alonso, T.A. Coombs, and A.M. Campbell, “Axial and journal bearings for superconducting flywheel systems,” IEEE Trans. Appl. Superconduc. 13, 2267 (2003).

    Google Scholar 

  11. Ryousuke Shiraishi, Kazuyuki Demachi, Mitsuru Uesaka, and Ryoichi Takahata, “Numerical and experimental analysis of the rotation speed degradation of superconducting magnetic bearings,” IEEE Trans. Appl. Superconduc. 13, 2279 (2003).

    Google Scholar 

  12. Xiaohua Jiang, Xiaoguang Zhu, Zhiguang Cheng, Xiaopeng Ren, and Yeye He, “A 150 kVA/0.3 MJ SMES voltage sag compensation system,” IEEE Trans. Appl. Superconduc. 15, 574 (2005).

    Google Scholar 

  13. C.J. Hawley and S.A. Gower, “Design and preliminary results of a prototype HTS SMES device,” IEEE Trans. Appl. Superconduc. 15, 1899 (2005).

    Google Scholar 

  14. So Noguchi, Atsushi Ishiyama, S. Akita, H. Kasahara, Y. Tatsuta, and S. Kouso, “An optimal configuration design method for HTS-SMES coils,” IEEE Trans. Appl. Superconduc. 15, 1927 (2005).

    Google Scholar 

  15. Ji Hoon Kim, Woo-Seok Kim, Song-Yop Hahn, Jae Moon Lee, Myung Hwan Rue, Bo Hyung Cho, Chang Hwan Im, and Hyun Kyo Jung, “Characteristic test of HTS pancake coil modules for small-sized SMES,” IEEE Trans. Appl. Superconduc. 15, 1919 (2005).

    Google Scholar 

  16. Takumi Ichihara, Koji Matsunaga, Makoto Kita, Izumi Hirabayashi, Masayuki Isono, Makoto Hirose, Keiji Yoshii, Kazuaki Kurihara, Osamu Saito, Shinobu Saito, Masato Murakami, Hirohumi Takabayashi, Mitsutoshi Natsumeda, and Naoki Koshizuka, “Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system,” IEEE Trans. Appl. Superconduc. 15, 2245 (2005).

    Google Scholar 

  17. Y.H. Han, J.R. Hull, S.C. Han, N.H. Jeong, T.H. Sung, and Kwangsoo No, “Design and characteristics of a superconductor bearing,” IEEE Trans. Appl. Superconduc. 15, 2249 (2005).

    Google Scholar 

  18. T.A. Coombs, I. Samad, D. Ruiz-Alonso, and K. Tadinada, “Superconducting micro-bearings,” IEEE Trans. Appl. Superconduc. 15, 2312 (2005).

    Google Scholar 

  19. Qiuliang Wang, Shouseng Song, Yuanzhong Lei, Yingming Dai, Bo Zhang, Chao Wang, Sangil Lee, and Keeman Kim, “Design and fabrication of a conduction-cooled high temperature superconducting magnet for 10 kJ superconducting magnetic energy storage system,” IEEE Trans. Appl. Superconduc. 16, 570 (2006).

    Google Scholar 

  20. H.J. Kim, K.C. Seong, J.W. Cho, J.H. Bae, K.D. Sim, S. Kim, E.V. Lee, K. Ryu, and S.H. Kim, “3 MJ/750 kVA SMES system for improving power quality,” IEEE Trans. Appl. Superconduc. 16, 574 (2006).

    Google Scholar 

  21. S. Nagaya, N. Hirano, H. Moriguchi, K. Shikimachi, H. Nakabayashi, S. Hanai, J. Inagaki, S. Ioka, and S. Kawashima, “Field test results of the 5 MVA SMES system for bridging instantaneous voltage dips,” IEEE Trans. Appl. Superconduc. 16, 632 (2006).

    Google Scholar 

  22. T. Tosaka, K. Koyanagi, K. Ohsemochi, M. Takahashi, Y. Ishii, M. Ono, H. Ogata, K. Nakamoto, H. Takigami, S. Nomura, K. Kidoguchi, H. Onoda, N. Hirano, and S. Nagaya, “Excitation tests of prototype HTS coil with Bi2212 cables for development of high energy density SMES,” IEEE Trans. Appl. Superconduc. 17, 2010 (2007).

    Google Scholar 

  23. M. Strasik, P.E. Johnson, A.C. Day, J. Mittleider, M.D. Higgins, J. Edwards, J.R. Schindler, K.E. McCrary, C.R. McIver, D. Carlson, J.F. Gonder, and J.R. Hull, “Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing, IEEE Trans. Appl. Superconduc. 17, 2133 (2007).

    Google Scholar 

  24. Uta Floegel-Delor,Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Thomas Riedel, and Frank N. Werfel, “Fabrication of HTS bearings with ton load performance,” IEEE Trans. Appl. Superconduc. 17, 2142 (2007).

    Google Scholar 

  25. Keigo Murakami, Mochimitsu Komori, and Hisashi Mitsuda, “Flywheel energy storage system using SMB and PMB,” IEEE Trans. Appl. Superconduc. 17, 2146 (2007).

    Google Scholar 

  26. Rubens de Andrade,Jr., Guilherme G. Sotelo, Antonio C. Ferreira, Luis G.B. Rolim, José da Silva Neto, Richard M. Stephan, Walter I. Suemitsu, and Roberto Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Appl. Superconduc. 17, 2154 (2007).

    Google Scholar 

  27. Takeshi Shimizu, Masaki Sueyoshi, Ryo Kawana, Toshihiko Sugiura, and Masatsugu Yoshizawa, “Internal resonance of a rotating magnet supported by a high-T c superconducting bearing,” IEEE Trans. Appl. Superconduc. 17, 2166 (2007).

    Google Scholar 

  28. T. Suzuki, E. Ito, T. Sakai, S. Koga, M. Murakami, K. Nagashima, Y. Miyazaki, H. Seino, N. Sakai, I. Hirabayashi, K. Sawa, “Temperature dependency of levitation force and its relaxation in HTS,” IEEE Trans. Appl. Superconduc. 17, 3020 (2007).

    Google Scholar 

  29. Qiuliang Wang, Yinming Dai, Souseng Song, Huaming Wen, Ye Bai, Luguang Yan, and Keeman Kim, “A 30 kJ Bi2223 high temperature superconducting magnet for SMES with solid-nitrogen protection,” IEEE Trans. Appl. Superconduc. 18, 754 (2008).

    Google Scholar 

  30. Liye Xiao, Zikai Wang, Shaotao Dai, Jinye Zhang, Dong Zhang, Zhiyuan Gao, Naihao Song, Fengyuan Zhang, Xi Xu, and Liangzhen Lin, “Fabrication and test of a 1 MJ HTS magnet for SMES,” IEEE Trans. Appl. Superconduc. 18, 770 (2008).

    Google Scholar 

  31. P. Tixador, M. Deleglise, A. Badel, K. Berger, B. Bellin, J.C. Vallier, A. Allais, and C.E. Bruzek, “First test of a 800 kJ HTS SMES,” IEEE Trans. Appl. Superconduc. 18, 774 (2008).

    Google Scholar 

Fault Current Limiter [LTS]

  1. J.D. Rogers, H.J. Boenig, P. Chowdhuri, R.I. Schermer, J.J. Wollan, and D.M. Weldon, “Superconducting fault current limiter and inductor design,” IEEE Trans. Magn. MAG-19, 1054 (1983).

    Google Scholar 

  2. E. Thuries, V.D. Pham, Y. Laumond, T. Verhaege, A. Fevrier, M. Collet, M. Bekhaled, “Towards the superconducting fault current limiter,” IEEE Trans. Power Delivery 6, 801 (1991).

    Google Scholar 

  3. T. Ishigohka and N. Sasaki, “Fundamental test of new DC superconducting fault current limiter,” IEEE Trans. Magn. 27, 2341 (1991).

    Google Scholar 

  4. Tsutomu Hoshino and Itsuya Muta, “Load test on superconducting transformer and fault current limiting devices for electric power system,” IEEE Trans. Magn. 30, 2018 (1994).

    Google Scholar 

Fault Current Limiter [HTS]

  1. D.W.A. Willen and J.R. Cave, “Short circuit test performance of inductive high Tc superconducting fault current limiters,” IEEE Trans. Appl. Superconduc. 5, 1047 (1995).

    Google Scholar 

  2. W. Paul, Th. Baumann, J. Rhyner, F. Platter, “Tests of 100 kW High-Tc super-conducting fault current limiter,” IEEE Trans. Appl. Superconduc. 5, 1059 (1995).

    Google Scholar 

  3. J. Acero, L. Garcia-Tabares, M. Bajko, J. Calero, X. Granados, X. Obradors, S. Pinol, “Current limiter based on melt processed YBCO bulk superconductors,” IEEE Trans. Appl. Superconduc. 5, 1071 (1995).

    Google Scholar 

  4. H. Kado and M. Ichikawa, “Performance of a high-Tc superconducting fault current limiter ‘Design of a 6.6 kV magnetic shielding type superconducting fault current limiter,’ ” IEEE Trans. Appl. Superconduc. 7, 993 (1997).

    Google Scholar 

  5. Minseok Joe and Tae Kuk Ko, “Novel design and operational characteristics of inductive high-Tc superconducting fault current limiter,” IEEE Trans. Appl. Superconduc. 7, 1005 (1997).

    Google Scholar 

  6. J.X. Jin, S.X. Dou, H.K. Liu, C. Grantham, Z.J. Zeng, Z.Y. Liu, T.R. Blackburn, X.Y. Li, H.L. Liu, J.Y. Liu, “Electrical application of high Tc superconducting saturable magnetic core fault current limiter,” IEEE Trans. Appl. Superconduc. 7, 1009 (1997).

    Google Scholar 

  7. D.J. Moule, P.D. Evans, T.C. Shields, S.A.L. Foulds, J.P.G. Price, J.S. Abell, “Study of fault current limiter using YBCO thick film material,” IEEE Trans. Appl. Superconduc. 7, 1025 (1997).

    Google Scholar 

  8. Victor Meerovich, Vladimir Sokolovsky,Shaul Goren, Andrey B. Kozyrev, Vitaly N. Osadchy, and Eugene K. Hollmann, “Operation of hybrid current limiter based on high-Tc superconducting thin film,” IEEE Trans. Appl. Superconduc. 7, 3783 (1997).

    Google Scholar 

  9. B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer, B. Seebacher, B. Utz, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer, B. Heismann, “Resistive fault current limiters with YBCO films 100 kVA functional model,” IEEE Trans. Appl. Superconduc. 9, 656 (1999).

    Google Scholar 

  10. K. Tekletsadik, M.P. Saravolac, A. Rowley, “Development of a 7.5 MVA superconducting fault current limiter,” IEEE Trans. Appl. Superconduc. 9, 672 (1999).

    Google Scholar 

  11. X. Granados, X. Obradors, T. Puig, E. Mendoza, V. Gomis, S. Piñol, L. García-Tabarés, J. Calero, “Hybrid superconducting fault current limiter based on bulk melt textured YBa2Cu3O7 ceramic composites,” IEEE Trans. Appl. Superconduc. 9, 1308 (1999).

    Google Scholar 

  12. E. Leung, B. Burley, N. Chitwood, H. Gurol, G. Miyata, D. Morris, L. Ngyuen, B. O'Hea, D. Paganini, S. Pidcoe, P. Haldar, M. Gardner, D. Peterson, H. Boenig, J. Cooley, Y. Coulter, W. Hults, C. Mielke, E. Roth, J. Smith, S. Ahmed, A. Rodriguez, A. Langhorn, M. Gruszczynski & J. Hoehn, “Design and development of a 15 kV, 20 kA HTS fault current limiter,” IEEE Trans. Appl. Superconduc. 10, 832 (2000).

    Google Scholar 

  13. Masahiro Takasaki, Shinji Torii, Haruhito Taniguchi, Hiroshi Kubota, Yuki Kudo, Hisahiro Yoshino, Hidehiro Nagamura and Masatoyo Shibuya, “Performance verification of a practical fault current limiter using YBCO thin film,” IEEE Trans. Appl. Superconduc. 11, 2499 (2001).

    Google Scholar 

  14. T. Janowski, H.D. Stryczewska, S. Kozak, B. Kondratowicz-Kucewicz, G. Wojtasiewicz, J. Kozak, P. Surdacki, and H. Malinowski, “Bi-2223 and Bi-2212 tubes for small fault current limiters,” IEEE Trans. Appl. Superconduc. 14, 851 (2004).

    Google Scholar 

  15. Hans-Peter Kraemer, Wolfgang Schmidt, Bernd Utz, Bernd Wacker, Heinz-Werner Neumueller, Gerd Ahlf, and Rainer Hartig, “Test of a 1 kA superconducting fault current limiter for DC applications,” IEEE Trans. Appl. Superconduc. 15, 1986 (2005).

    Google Scholar 

  16. Louis Antognazza, Michel Decroux, Mathieu Therasse, Markus Abplanalp, and Øystein Fischer, “Test of YBCO thin films based fault current limiters with a newly designed meander,” IEEE Trans. Appl. Superconduc. 15, 1990 (2005).

    Google Scholar 

  17. Min Cheol Ahn, Duck Kweon Bae, Seong Eun Yang, Dong Keun Park, Tae Kuk Ko, Chanjoo Lee, Bok-Yeol Seok, and Ho-Myung Chang, “Manufacture and test of small-scale superconducting fault current limiter by using the bifilar winding of coated conductor,” IEEE Trans. Appl. Superconduc. 16, 646 (2006).

    Google Scholar 

  18. Kazuaki Arai, Hideki Tanaka, Masaya Inaba, Hirohito Arai, Takeshi Ishigohka, Mitsuho Furuse, and Masaichi Umeda, “Test of resonance-type superconducting fault current limiter,” IEEE Trans. Appl. Superconduc. 16, 650 (2006).

    Google Scholar 

  19. T. Yazawa, Y. Ootani, M. Sakai, M. Otsuki, T. Kuriyama, M. Urata, Y. Tokunaga, and K. Inoue, “Design and test results of 66 kV high-Tc superconducting fault current limiter magnet,” IEEE Trans. Appl. Superconduc. 16, 683 (2006).

    Google Scholar 

  20. Manuel R. Osorio, José A. Lorenzo, Paula Toimil, Gonzalo Ferro, José A. Veira, and Félix Vidal, “Inductive superconducting fault current limiters with Y123 thin-film washers versus Bi2223 bulk rings as secondaries,” IEEE Trans. Appl. Superconduc. 16, 1937 (2006).

    Google Scholar 

  21. V. Rozenshtein, A. Friedman, Y. Wolfus, F. Kopansky, E. Perel, Y. Yeshurun, Z. Bar-Haim, Z. Ron, E. Harel, and N. Pundak, “Saturated cores FCL—A new approach,” IEEE Trans. Appl. Superconduc. 17, 1756 (2007).

    Google Scholar 

  22. Ying Xin, Weizhi Gong, Xiaoye Niu, Zhengjian Cao, Jingyin Zhang, Bo Tian, Haixia Xi, Yang Wang, Hui Hong, Yong Zhang, Bo Hou, and Xicheng Yang, “Development of saturated iron core HTS fault current limiters,” IEEE Trans. Appl. Superconduc. 17, 1760 (2007).

    Google Scholar 

  23. Rossella B. Dalessandro, Marco Bocchi, Valerio Rossi, and Luciano F. Martini, “Test results on 500 kVA-class MgB2-based fault current limiter prototypes,” IEEE Trans. Appl. Superconduc. 17, 1776 (2007).

    Google Scholar 

  24. S.I. Kopylov, N.N. Balashov, S.S. Ivanov, A.S. Veselovsky, V.S. Vysotsky, and V.D. Zhemerikin, “The effect of sectioning on superconducting fault current limiter operation,” IEEE Trans. Appl. Superconduc. 17, 1799 (2007).

    Google Scholar 

  25. Keisuke Fushiki, Tanzo Nitta, Jumpei Baba, and Kozo Suzuki, “Design and basic test of SFCL of transformer type by use of Ag sheathed BSCCO wire,” IEEE Trans. Appl. Superconduc. 17, 1815 (2007).

    Google Scholar 

  26. Hyo-Sang Choi and Sung-Hun Lim, “Operating performance of the flux-lock and the transformer type superconducting fault current limiter using the YBCO thin films,” IEEE Trans. Appl. Superconduc. 17, 1823 (2007).

    Google Scholar 

  27. A. Gyore, S. Semperger, V. Tihanyi, I. Vajda, M.R. Gonal, K.P. Muthe, S.C. Kashyap, and D.K. Pandya, “Experimental analysis of different type HTS rings in fault current limiter,” IEEE Trans. Appl. Superconduc. 17, 1899 (2007).

    Google Scholar 

  28. Carlos A. Baldan, Carlos Y. Shigue, Jerika S. Lamas, and Ernesto Ruppert Filho, “Test results of a superconducting fault current limiter using YBCO coated conductor,” IEEE Trans. Appl. Superconduc. 17, 1903 (2007).

    Google Scholar 

  29. T. Hori, M. Endo, T. Koyama, I. Yamaguchi, K. Kaiho, M. Furuse, and S. Yanabu, “Study of kV class current limiting unit with YBCO thin films,” IEEE Trans. Appl. Superconduc. 17, 1986 (2007).

    Google Scholar 

  30. Caihong Zhao, Zikai Wang, Dong Zhang, Jingye Zhang, Xiaoji Du, Wengyong Guo, Liye Xiao, and Liangzhen Lin, “Development and test of a superconducting fault current limiter-magnetic energy storage (SFCL-MES) system,” IEEE Trans. Appl. Superconduc. 17, 2014 (2007).

    Google Scholar 

  31. L.F. Li, L.H. Gong, X.D. Xu, J.Z. Lu, Z. Fang, and H.X. Zhang, “Field test and demonstrated operation of 10.5kV/1.5kA HTS fault current limiter,” IEEE Trans. Appl. Superconduc. 17, 2055 (2007).

    Google Scholar 

  32. A. Usoskin, A. Rutt, B. Prause, R. Dietrich, and P. Tixador, “Coated conductor based FCL with controllable time response,” IEEE Trans. Appl. Superconduc. 17, 3475 (2007).

    Google Scholar 

  33. Hyoungku Kang, Chanjoo Lee, Kwanwoo Nam, Yong Soo Yoon, Ho-Myung Chang, Tae Kuk Ko, and Bok-Yeol Seok, “Development of a 13.2kV/630A (8.3 MVA) high temperature superconducting fault current limiter,” IEEE Trans. Appl. Superconduc. 18, 624 (2008).

    Google Scholar 

  34. Min Cheol Ahn, Dong Keun Park, Seong Eun Yang, and Tae Kuk Ko, “Impedance characteristics of non-inductive coil wound with two kinds of HTS wire in parallel,” IEEE Trans. Appl. Superconduc. 18, 640 (2008).

    Google Scholar 

  35. Carlos A. Baldan, Carlos Y. Shigue, and Ernesto Ruppert Filho, “Fault current test of a bifilar Bi-2212 bulk coil,” IEEE Trans. Appl. Superconduc. 18, 664 (2008).

    Google Scholar 

  36. Kei Koyanagi, Takashi Yazawa, Masahiko Takahashi, Michitaka Ono, and Masami Urata, “Design and test results of a fault current limiter coil wound with stacked YBCO tapes,” IEEE Trans. Appl. Superconduc. 18, 676 (2008).

    Google Scholar 

Transformer [LTS]

  1. H. Riemersma, P.W. Eckels, M.L. Barton, J.H. Murphy, D.C. Litz, J.F. Roach, “Application of superconducting technology to power transformers,” IEEE Trans. Power Apparatus and Systems PAS-100, 3398 (1981).

    Google Scholar 

  2. H.H.J. ten Kate, A.H.M. Holtslag, J. Knoben, H.A. Steffens and L.J.M. van de Klundert, “Status report of the three phase 25 kA, 1.5 kW thermally switched superconducting rectifier, transformer and switches,” IEEE Trans. Magn. MAG-19, 1059 (1983).

    Google Scholar 

  3. Y. Yamamoto, N. Mizukami, T. Ishigohka, K. Ohshima, “A feasibility study on a superconducting power transformer,” IEEE Trans. Magn. MAG-22, 418 (1986).

    Google Scholar 

  4. A. Fevrier, J.P. Tavergnier, Y. Laumond, M. Bekhaled, “Preliminary tests on a superconducting power transformer,” IEEE Trans. Magn. MAG-24, 1059 (1988).

    Google Scholar 

  5. E.M.W. Leung, R.E. Bailey, M.A. Hilal, “Hybrid pulsed power transformer (HPPT): magnet design and results of verification experiments,” IEEE Trans. Magn. MAG-24, 1508 (1988).

    Google Scholar 

Transformer [HTS]

  1. K. Funaki, M. Iwakuma, M. Takeo, K. Yamafuji, J. Suchiro, M. Hara, M. Konno, Y. Kasagawa, I. Itoh, S. Nose, M. Ueyama, K. Hayashi, and K. Sato, “Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen,” IEEE Trans. Appl. Superconduc. 7, 824 (1997).

    Google Scholar 

  2. S.W. Schwenterly, B.W. McConnell, J.A. Demko, A. Fadnek, J. Hsu, F.A. List, M.S. Walker, D.W. Hazelton, F.S. Murray, J.A. Rice, C.M. Trautwein, X. Shi, R.A. Farrell, J. Bascuñan, R.E. Hintz, S.P. Mehta, N. Aversa, J.A. Ebert, B.A. Bednar, D.J. Neder, A.A. McIlheran, P.C. Michel, J.J. Nemec, E.F. Pleva, A.C. Swenton, W. Swets, R.C. Longsworth, R.C. Johnson, R.H. Jones, J.K. Nelson, R.C. Degeneff, and S.J. Salon, “Performance of a 1-MVA HTS demonstration transformer,” IEEE Trans. Appl. Superconduc. 9, 680 (1999).

    Google Scholar 

  3. Maitham K. Al-Mosawi, Carlo Beduz, Yifeng Yang, Mike Webb and Andrew Power, “The effect of flux diverters on AC losses of a 10 kVA high temperature superconducting demonstrator transformer,” IEEE Trans. Appl. Superconduc. 11, 2800 (2001).

    Google Scholar 

  4. Ho-Myung Chang, Yeon Suk Choi, Steven W. Van Sciver, and Thomas L. Baldwin, “Cryogenic cooling temperature of HTS transformers for compactness and efficiency,” IEEE Trans. Appl. Superconduc. 13, 2298 (2003).

    Google Scholar 

  5. Z. Jelinek, Z. Timoransky, F. Zizek, H. Piel, F. Chovanec, P. Mozola, L. Jansak, P. Kvitkovic, P. Usak, and M. Polak, “Test results of 14 kVA superconducting transformer with Bi-2223/Ag windings,” IEEE Trans. Appl. Superconduc. 13, 2310 (2003).

    Google Scholar 

  6. P. Tixador, G. Donnier-Valentin, and E. Maher, “Design and construction of a 41 kVA Bi/Y transformer,” IEEE Trans. Appl. Superconduc. 13, 2331 (2003).

    Google Scholar 

  7. Michael Meinert, Martino Leghissa, Reinhard Schlosser, and Heinz Schmidt, “System test of a 1-MVA-HTS-transformer connected to a converter-fed drive for rail vehicles,” IEEE Trans. Appl. Superconduc. 13, 2348 (2003).

    Google Scholar 

  8. T. Bohno, A. Tomioka, M. Imaizumi, Y. Sanuki, T. Yamamoto, Y. Yasukawa, H. Ono, Y. Yagi and K. Iwadate, “Development of 66kV/6.9kV 2MVA prototype HTS power transformer,” Physica C: Superconductivity 426–431, 1402 (2005).

    Google Scholar 

  9. C.S. Weber, C.T. Reis, D.W. Hazelton, S.W. Schwenterly, M.J. Cole, J.A. Demko, E.F. Pleva, S. Mehta, T. Golner, and N. Aversa, “Design and operational testing of a 5/10-MVA HTS utility power transformer,” IEEE Trans. Appl. Superconduc. 15, 2210 (2005).

    Google Scholar 

  10. Alessandro Formisano, Fabrizio Marignetti, Raffaele Martone, Giovanni Masullo, Antonio Matrone, Raffaele Quarantiello, and Maurizio Scarano, “Performance evaluation for a HTS transformer,” IEEE Trans. Appl. Superconduc. 16, 1501 (2006).

    Google Scholar 

  11. H. Okubo, C. Kurupakorn, S. Ito, H. Kojima, N. Hayakawa, F. Endo, and M. Noe, “High-Tc superconducting fault current limiting transformer (HTc-SFCLT) with 2G coated conductors,” IEEE Trans. Appl. Superconduc. 17, 1768 (2007).

    Google Scholar 

  12. I. Vajda, A. Gyore, S. Semperger, A.E. Baker, E.F.H. Chong, F.J. Mumford, V. Meerovich, and V. Sokolovsky, “Investigation of high temperature superconducting self-limiting transformer with YBCO cylinder,” IEEE Trans. Appl. Superconduc. 17, 1887 (2007).

    Google Scholar 

  13. H. Kamijo, H. Hata, H. Fujimoto, A. Inoue, K. Nagashima, K. Ikeda, M. Iwakuma, K. Funaki, Y. Sanuki, A. Tomioka, H. Yamada, K. Uwamori, and S. Yoshida, “Investigation of high temperature superconducting self-limiting transformer with YBCO cylinder,” IEEE Trans. Appl. Superconduc. 17, 1927 (2007).

    Google Scholar 

  14. S.W. Lee, Y.I. Hwang, H.W. Lim, W.S. Kim, K.D. Choi, and S. Hahn, “Characteristics of a continuous disk winding for large power HTS transformer,” IEEE Trans. Appl. Superconduc. 17, 1943 (2007).

    Google Scholar 

  15. Yinshun Wang, Xiang Zhao, Junjie Han, Huidong Li, Ying Guan, Qing Bao, Liye Xiao, Liangzhen Lin, Xi Xu, Naihao Song, and Fengyuan Zhang, “Development of a 630 kVA three-phase HTS transformer with amorphous alloy cores,” IEEE Trans. Appl. Superconduc. 17, 2051 (2007).

    Google Scholar 

Transmission [LTS]

  1. R.L. Garwin and J. Matisoo, “Superconducting lines for the transmission of large amounts of electrical power over great distances,” Proc. IEEE 55, 538 (1967).

    Google Scholar 

  2. E. Bochenek, H. Franke, R. Wimmershoff, “Manufacture and initial technical tests of a high-power d.c. cable with superconductors,” IEEE Trans. Magn. MAG-11, 366 (1975).

    Google Scholar 

  3. E.B. Forsyth, “Progress at Brookhaven in the design of helium-cooled power transmission systems,” IEEE Trans. Magn. MAG-11, 393 (1975).

    Google Scholar 

  4. A.S. Clorfeine, B.C. Belanger, N.P. Laguna, “Recent progress in superconducting transmission,” IEEE Trans. Magn. MAG-12, 915 (1976).

    Google Scholar 

  5. I.M. Bortnik, V.L. Karapazuk, V.V. Lavrova, S.I. Lurie, Yu. V. Petrovsky, L.M. Fisher, “Investigations on the development of superconducting DC power transmission lines,” IEEE Trans. Magn. MAG-13, 188 (1977).

    Google Scholar 

  6. J.D. Thompson, M.P. Maley, L.R. Newkirk, F.A. Valencia, R.V. Carlson, G.H. Morgan, “Construction and properties of a 1-m long Nb3Ge-based AC superconducting power transmission cable,” IEEE Trans. Magn. MAG-17, 149 (1981).

    Google Scholar 

  7. P. Klaudy, I. Gerhold, A. Beck, P. Rohner, E. Scheffler, and G. Ziemke, “First field trials of a superconducting power cable within the power grid of a public utility,” IEEE Trans. Magn. MAG-17, 153 (1981).

    Google Scholar 

  8. E.B. Forsyth and G.H. Morgan, “Full-power trials of the Brookhaven superconducting power transmission system,” IEEE Trans. Magn. MAG-19, 652 (1983).

    Google Scholar 

Transmission [HTS]

  1. J.W. Lue, M.S. Lubell, E.C. Jones, J.A. Demko, D.M. Kroeger, P.M. Martin, U. Sinha, and R.L. Hughey, “Test of two prototype high-temperature superconducting transmission cables,” IEEE Trans. Appl. Superconduc. 7, 302 (1997).

    Google Scholar 

  2. M. Leghissa, J. Rieger, H.-W. Neumüller, J. Wiezoreck, F. Schmidt, W. Nick, P. van Hasselt, R. Schroth, “Development of HTS power transmission cables,” IEEE Trans. Appl. Superconduc. 9, 406 (1999).

    Google Scholar 

  3. Y.B. Lin, L.Z. Lin, Z.Y. Gao, H.M. Wen, L. Xu, L. Shu, J. Li, L.Y. Xiao, L. Zhou, and G.S. Yuan, “Development of HTS transmission power cable,” IEEE Trans. Appl. Superconduc. 11, 2371 (2001).

    Google Scholar 

  4. J.P. Stovall, J.A. Demko, P.W. Fisher, M.J. Gouge, J.W. Lue, U.K. Sinha, J.W. Armstrong, R.L. Hughey, D. Lindsay, and J.C. Tolbert, “Installation and operation of the Southwire 30-meter high-temperature superconducting power cable,” IEEE Trans. Appl. Superconduc. 11, 2467 (2001).

    Google Scholar 

  5. D.W.A. Willen, F. Hansen, C.N. Rasmussen, M. Däumling, O.E. Schuppach, E. Hansen, J. Baerentzen, B. Svarrer-Hansen, Chresten Traeholt, S.K. Olsen, C. Ramussen, E. Veje, K.H. Jensen, J. Østergaard, S.D. Mikkelsen,J. Mortensen, M. Dam-Andersen, “Test results of full-scale HTS cable models and plans for a 36 kV, 2kArms utility demonstration,” IEEE Trans. Appl. Superconduc. 11, 2473 (2001).

    Google Scholar 

  6. Jeonwook Cho, Joon-Han Bae, Hae-Jong Kim, Ki-Deok Sim, Ki-Chul Seong, Hyun-Man Jang, and Dong-Wook Kim, “Development and testing of 30 m HTS power transmission cable,” IEEE Trans. Appl. Superconduc. 15, 1719 (2005).

    Google Scholar 

  7. Shinichi Mukoyama, Noboru Ishii, Masashi Yagi, Satoru Tanaka, Satoru Maruyama, Osamu Sato, and Akio Kimura, “Manufacturing and installation of the world’s longest HTS cable in the Super-ACE project,” IEEE Trans. Appl. Superconduc. 15, 1763 (2005).

    Google Scholar 

  8. Ying Xin, Bo Hou, Yanfang Bi, Haixia Xi, Yong Zhang, Anlin Ren, Xicheng Yang, Zhenghe Han, Songtao Wu, and Huaikuang Ding, “Introduction of China’s first live grid installed HTS power cable system,” IEEE Trans. Appl. Superconduc. 15, 1814 (2005).

    Google Scholar 

  9. Takato Masuda, Hiroyasu Yumura, M. Watanabe, Hiroshi Takigawa, Y. Ashibe, Chizuru Suzawa, H. Ito, Masayuki Hirose, Kenichi Sato, Shigeki Isojima, C. Weber, Ron Lee, and Jon Moscovic, “Fabrication and installation results for Albany HTS cable,” IEEE Trans. Appl. Superconduc. 17, 1648 (2007).

    Google Scholar 

  10. S. Mukoyama, M. Yagi, M. Ichikawa, S. Torii, T. Takahashi, H. Suzuki, and K. Yasuda, “Experimental results of a 500 m HTS power cable field test,” IEEE Trans. Appl. Superconduc. 17, 1680 (2007).

    Google Scholar 

  11. Victor E. Sytnikov, Vitaly S. Vysotsky, Alexander V. Rychagov, Nelly V. Polyakova, Irlama P. Radchenko, Kirill A. Shutov, Eugeny A. Lobanov, and Sergei S. Fetisov, “The 5 m HTS power cable development and test,” IEEE Trans. Appl. Superconduc. 17, 1684 (2007).

    Google Scholar 

  12. Lauri Rostila, Jorma R. Lehtonen, Mika J. Masti, Risto Mikkonen, Fedor Gömöry, Tibor Melíěk, Eugen Seiler, Jan Šouc, and Alexander I. Usoskin, “AC losses and current sharing in an YBCO cable,” IEEE Trans. Appl. Superconduc. 17, 1688 (2007).

    Google Scholar 

  13. T. Hamajima, M. Tsuda, T. Yagai, S. Monma, H. Satoh, and K. Shimoyama, “Analysis of AC losses in a tri-axial superconducting cable,” IEEE Trans. Appl. Superconduc. 17, 1692 (2007).

    Google Scholar 

  14. Daisuke Miyagi, Satoru Iwata, Norio Takahashi, and Shinji Torii, “3D FEM analysis of effect of current distribution on AC loss in shield layers of multi-layered HTS power cable,” IEEE Trans. Appl. Superconduc. 17, 1696 (2007).

    Google Scholar 

  15. Satoshi Fukui, Takeshi Noguchi, Jun Ogawa, Mitsugi Yamaguchi, Takao Sato, Osami Tsukamoto, and Tomoaki Takao, “Numerical study on AC loss minimization of multi-layer tri-axial HTS cable for 3-phase AC power transmission,” IEEE Trans. Appl. Superconduc. 17, 1700 (2007).

    Google Scholar 

  16. M.J. Gouge, J.A. Demko, R.C. Duckworth, D.T. Lindsay, C.M. Rey, M.L. Roden, and J.C. Tolbert, “Testing of an HTS power cable made from YBCO tapes,” IEEE Trans. Appl. Superconduc. 17, 1708 (2007).

    Google Scholar 

  17. Naoyuki Amemiya, Zhenan Jiang, Masaki Nakahata, Masashi Yagi, Shinichi Mukoyama, Naoji Kashima, Shigeo Nagaya, and Yuh Shiohara, “AC loss reduction of superconducting power transmission cables composed of coated conductors,” IEEE Trans. Appl. Superconduc. 17, 1712 (2007).

    Google Scholar 

  18. Makoto Hamabe, Atsushi Sasaki, Tosin S. Famakinwa, Akira Ninomiya, Yasuhide Ishiguro, and Satarou Yamaguchi, “Cryogenic system for DC superconducting power transmission line,” IEEE Trans. Appl. Superconduc. 17, 1722 (2007).

    Google Scholar 

  19. H.J. Kim, D.S. Kwag, S.H. Kim, J.W. Cho, and K.C. Seong, “Electrical insulation design and experimental results of a high-temperature superconducting cable,” IEEE Trans. Appl. Superconduc. 17, 1743 (2007).

    Google Scholar 

  20. J.F. Maguire, F. Schmidt, S. Bratt, T.E. Welsh, J. Yuan, A. Allais, and F. Hamber, “Development and demonstration of a HTS power cable to operate in the Long Island Power Authority transmission grid,” IEEE Trans. Appl. Superconduc. 17, 2034 (2007).

    Google Scholar 

  21. C.S. Weber, R. Lee, S. Ringo, T. Masuda, H. Yumura, and J. Moscovic, “Testing and demonstration results of the 350 m long HTS cable system installed in Albany, NY,” IEEE Trans. Appl. Superconduc. 17, 2038 (2007).

    Google Scholar 

  22. S.H. Sohn, J.H. Lim, S.W. Yim, O.B. Hyun, H.R. Kim, K. Yatsuka, S. Isojima, T. Masuda, M. Watanabe, H.S. Ryoo, H.S. Yang, D.L. Kim, S.D. Hwang, “The results of installation and preliminary test of 22.9kV, 50MVA, 100m class HTS power cable system at KEPCO,” IEEE Trans. Appl. Superconduc. 17, 2043 (2007).

    Google Scholar 

Motor [LTS]

  1. William J. Levedahl, “Superconductive naval propulsion systems,” Proc. 1972 Appl. Superconduc. Conf. (IEEE Publ. No. 72CH0682-5-TABSC), 26 (1972).

    Google Scholar 

  2. Howard O. Stevens, Michael J. Superczynski, Timothy J. Doyle, John H. Harrison, Harry Messinger, “Superconductive machinery for naval ship propulsion,” IEEE Trans. Magn. MAG-13, 269 (1977).

    Google Scholar 

  3. R.A. Marshall, “3000 horsepower superconductive field acyclic motor,” IEEE Trans. Magn. MAG-19, 876 (1983).

    Google Scholar 

Motor [HTS]

  1. A. Takeoka, A. Ishikawa, M. Suzuki, K. Niki and Y. Kuwano, “Meissner motor using high-Tc ceramic superconductors,” IEEE Trans. Magn. 25, 2511 (1989).

    Google Scholar 

  2. Alan D. Crapo and Jerry D. Lloyd, “Homopolar DC motor and trapped flux brushless DC motor using high temperature superconductor materials,” IEEE Trans. Magn. 27, 2244 (1991).

    Google Scholar 

  3. C.H. Joshi, C.B. Prum, R.F. Schiferl, D.L. Driscoll, “Demonstration of two synchronous motors using high temperature superconducting field coils,” IEEE Trans. Appl. Superconduc. 5, 968 (1995).

    Google Scholar 

  4. Michael J. Superczynski, Jr. and Donald J. Waltman, “Homopolar motor with high temperature superconductor field windings,” IEEE Trans. Appl. Superconduc. 7, 513 (1997).

    Google Scholar 

  5. J.P. Voccio, B.B. Gamble, C.B. Prum, H.J. Picard, “125 HP HTS motor field winding development,” IEEE Trans. Appl. Superconduc. 7, 519 (1997).

    Google Scholar 

  6. J.-T. Eriksson,R. Mikkonen, J. Paasi, R. Perälä andL. Söderlund, “A(n) HTS synchronous motor at different operating temperatures,” IEEE Trans. Appl. Superconduc. 7, 523 (1997).

    Google Scholar 

  7. Drew W. Hazelton, Michael T. Gardner, Joseph A. Rice, Michael S. Walker, Chandra M. Trautwein, Pradeep Haldar, Donald U. Gubser, Michael Superczynski, Donald Waltman, “HTS coils for the Navy’s superconducting homopolar motor/generator,” IEEE Trans. Appl. Superconduc. 7, 664 (1997).

    Google Scholar 

  8. D. Aized, B.B. Gamble, A. Sidi-Yekhlef, J.P. Voccio, D.I. Driscoll, B.A. Shoykhet, B.X. Zhang, “Status of the 1000 HP HTS motor development,” IEEE Trans. Appl. Superconduc. 9, 1201 (1999).

    Google Scholar 

  9. B. Oswald, M. Krone, M. Söll, T. Straßer, J. Oswald, K.-J. Best, W. Gawalek, L. Kovalev, “Superconducting reluctance motors with YBCO bulk material,” IEEE Trans. Appl. Superconduc. 9, 1201 (1999).

    Google Scholar 

  10. P. Tixador, F. Simon, H. Daffix, M. Deleglise, “150-kW experimental superconducting permanent-magnet motor,” IEEE Trans. Appl. Superconduc. 9, 1205 (1999).

    Google Scholar 

  11. John R. Hull, Suvankar SenGupta, andJ.R. Gaines, “Trapped-flux internal-dipole superconducting motor/generator,” IEEE Trans. Appl. Superconduc. 9, 1229 (1999).

    Google Scholar 

  12. Myungkon Song, YongSoo Yoon, WonKap Jang, Taekuk Ko, GyeWon Hong, InBae Jang, “The design, manufacture and characteristic experiment of a small-scaled high-Tc superconducting synchronous motor,” IEEE Trans. Appl. Superconduc. 9, 1241 (1999).

    Google Scholar 

  13. L.K. Kovalev, K.V. Ilushin, S.M.-A. Koneev, K.L. Kovalev, V.T. Penkin, V.N. Poltavets, W. Gawalek, T. Habisreuther, B. Oswald, K.-J. Best, “Hysteresis and reluctance electric machines with bulk HTS rotor elements,” IEEE Trans. Appl. Superconduc. 9, 1261 (1999).

    Google Scholar 

  14. Mochimitsu Komori, Kazunori Fukuda, and Akio Hirashima, “A prototype magnetically levitated stepping motor using high Tc bulk superconductors,” IEEE Trans. Appl. Superconduc. 10, 1626 (2000).

    Google Scholar 

  15. Young-Sik Jo, Young-Kil Kwon, Myung-Hwan Sohn, Young-Kyoun Kim, Jung-Pyo Hong, “High temperature superconducting synchronous motor,” IEEE Trans. Appl. Superconduc. 12, 833 (2002).

    Google Scholar 

  16. Woo-Seok Kim, Sang-Yong Jung, Ho-Yong Choi, Hyun-Kyo Jung, Ji Hoon Kim, and Song-Yop Hahn, “Development of a superconducting linear synchronous motor,” IEEE Trans. Appl. Superconduc. 12, 842 (2002).

    Google Scholar 

  17. M. Frank, J. Frauenhofer, P. van Hasselt, W. Nick, H.-W. Neumueller, and G. Nerowski, “Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations,” IEEE Trans. Appl. Superconduc. 13, 2120 (2003).

    Google Scholar 

  18. Hun-June Jung, Taketsune Nakamura, Itsuya Muta, and Tsutomu Hoshino, “Characteristics of axial-type HTS motor under different temperature conditions,” IEEE Trans. Appl. Superconduc. 13, 2201 (2003).

    Google Scholar 

  19. Jungwook Sim, Myungjin Park, Hyoungwoo Lim, Gueesoo Cha, Junkeun Ji, and Jikwang Lee, “Test of an induction motor with HTS wire at end ring and bars,” IEEE Trans. Appl. Superconduc. 13, 2231 (2003).

    Google Scholar 

  20. M.H. Sohn, S.K. Baik, Y.S. Jo, E.Y. Lee, W.S. Kwon, Y.K. Kwon, T.S. Moon, Y.C. Kim, C.H. Cho, and I. Muta, “Performance of high temperature superconducting field coils for a 100 HP motor,” IEEE Trans. Appl. Superconduc. 14, 912 (2004).

    Google Scholar 

  21. S.D. Chu and S. Torii, “Torque-speed characteristics of superconducting synchronous reluctance motors with DyBCO bulk in the rotor,” IEEE Trans. Appl. Superconduc. 15, 2178 (2005).

    Google Scholar 

  22. Hirohisa Matsuzaki, Yousuke Kimura, Eisuke Morita, Hideaki Ogata, Tetsuya Ida, Mitsuru Izumi, Hidehiko Sugimoto, Motohiro Miki, and Masahiro Kitano, “HTS bulk pole-field magnets motor with a multiple rotor cooled by liquid nitrogen,” IEEE Trans. Appl. Superconduc. 17, 1553 (2007).

    Google Scholar 

  23. Stephen D. Umans, Boris A. Shoykhet, Joseph K. Zevchek, Christopher M. Rey, and Robert C. Duckworth, “Quench in high-temperature superconducting motor field coils: Experimental results at 30 K,” IEEE Trans. Appl. Superconduc. 17, 1561 (2007).

    Google Scholar 

  24. M. Steurer, S. Woodruff, T. Baldwin, H. Boenig, F. Bogdan, T. Fikse, M. Sloderbeck, and G. Snitchler, “Hardware-in-the-loop investigation of rotor heating in a 5 MW HTS propulsion motor,” IEEE Trans. Appl. Superconduc. 17, 1595 (2007).

    Google Scholar 

  25. Masataka Iwakuma, Akira Tomioka, Masayuki Konno, Yoshiji Hase, Toshihiro Satou, Yoshihiro Iijima, Takashi Saitoh, Yutaka Yamada, Teruo Izumi, and Yuh Shiohara, “Development of a 15 kW motor with a fixed YBCO superconducting field winding,” IEEE Trans. Appl. Superconduc. 17, 1607 (2007).

    Google Scholar 

  26. Taesoo Song, Akira Ninomiya, and Takeshi Ishigohka, “Experimental study on induction motor with superconducting secondary conductors,” IEEE Trans. Appl. Superconduc. 17, 1611 (2007).

    Google Scholar 

  27. Taketsune Nakamura, Yoshio Ogama, and Hironori Miyake, “Performance of inverter fed HTS induction-synchronous motor operated in liquid nitrogen,” IEEE Trans. Appl. Superconduc. 17, 1615 (2007).

    Google Scholar 

  28. J. López, J. Lloberas, R. Maynou, X. Granados, R. Bosch, X. Obradors, and R. Torres, “AC three-phase axial flux motor with magnetized superconductors,” IEEE Trans. Appl. Superconduc. 17, 1633 (2007).

    Google Scholar 

  29. Hidehiko Sugimoto, Teppei Tsuda, Takaya Morishita, Yoshinori Hondou, Toshio Takeda, Hiroyuki Togawa, Tomoya Oota, Kazuya Ohmatsu, and Shigeru Yoshida, “Development of an axial flux type PM synchronous motor with the liquid nitrogen cooled HTS armature windings,” IEEE Trans. Appl. Superconduc. 17, 1637 (2007).

    Google Scholar 

Papers Cited in Table 9.7: MAGLEV [LTS]

  1. J.R. Powell and G.T. Danby, “Magnetic suspension for levitated tracked vehicles,” Cryogenics 11, 192 (1971).

    Google Scholar 

  2. Tadatoshi Yamada, Masatami Iwamoto, and Toshio Ito, “Levitation performance of magnetically suspended high speed trains,” IEEE Trans. Magn. MAG-8, 634 (1972).

    Google Scholar 

  3. H.H. Kolm and R.D. Thorton, “Magneplane: guided electromagnetic flight,” IEEE Conf. Record, IEEE Cat. No. 72 CHO-682-5 TABSC, 72 (1972).

    Google Scholar 

  4. H. Coffey, J. Solinsky, J. Colton, and J. Woodbury, “Dynamic performance of the SRI Maglev vehicle,” IEEE Trans. Magn. MAG-10, 451 (1974).

    Google Scholar 

  5. H. Kimura, H. Ogata, S. Sato, R. Saito, and N. Tada, “Superconducting magnet with tube-type cryostat for magnetically suspended train,” IEEE Trans. Magn. MAG-10, 619 (1974).

    Google Scholar 

  6. H. Ichikawa and H. Ogiwara, “Design considerations of superconducting magnets as a Maglev pad,” IEEE Trans. Magn. MAG-10, 1099 (1974).

    Google Scholar 

  7. Y. Iwasa, W. Brown, and C. Wallace, “An operational 1/25-scale magneplane system with superconducting coils,” IEEE Trans. Magn. MAG-11, 1490 (1975).

    Google Scholar 

  8. David L. Atherton, Anthony R. Eastham, Boon-Teck Ooi, and O.P. Jain, “Forces and moments for electrodynamic levitation systems—large-scale test results and theory,” IEEE Trans. Magn. MAG-14, 59 (1978).

    Google Scholar 

  9. T. Ohtsuka and Y. Kyotani, “Superconducting maglev tests,” IEEE Trans. Magn. MAG-15, 1416 (1979).

    Google Scholar 

  10. C.G. Homan, C.E. Cummings, and C.M. Fowler, “Superconducting augmented rail gun (SARG),” IEEE Trans. Magn. MAG-22, 1527 (1986).

    Google Scholar 

  11. Hiroshi Nakashima, “The superconducting magnet for the Maglev transport system,” IEEE Trans. Magn. 30, 1572 (1994).

    MathSciNet  Google Scholar 

  12. H. Nakao, T. Yamashita, Y. Sanada, S. Yamaji, S. Nakagaki, T. Shudo, M. Takahashi, A. Miura, M. Terai, M. Igarashi, T. Kurihara, K. Tomioka, M. Yamaguchi, “Development of a modified superconducting magnet for Maglev vehicles,” IEEE Trans. Appl. Superconduc. 9, 1000 (1999).

    Google Scholar 

  13. Y. Yoshino, A. Iwabuchi, T. Suzuki, and H. Seino, “Property of mechanical heat generation inside the superconducting coil installed in MAGLEV inner vessel,” IEEE Trans. Appl. Superconduc. 16, 1803 (2006).

    Google Scholar 

  14. Luguang Yan, “Development and application of the Maglev transportation system,” IEEE Trans. Appl. Superconduc. 18, 92 (2008).

    Google Scholar 

Papers Cited in Table 9.7: MAGLEV [HTS]

  1. C.E. Oberly, G. Kozlowski, C.E. Gooden, Roger X. Lenard, Asok K. Sarkar, I. Maartense, J.C. Ho, “Principles of application of high temperature superconductors to electromagnetic launch technology,” IEEE Trans. Magn. 27, 509 (1991).

    Google Scholar 

  2. Kenneth G. Herd, E. Trifon Laskaris, and Paul S. Thompson, “A cryogen-free superconducting magnet for Maglev applications: design and test results,” IEEE Trans. Appl. Superconduc. 5, 961 (1995).

    Google Scholar 

  3. A. Senba, H. Kitahara, H. Ohsaki and E. Masada, “Characteristics of an electromagnetic levitation system using a bulk superconductor,” IEEE Trans. Magn. 32, 5049 (1996).

    Google Scholar 

  4. Mitsuyoshi Tsuchiya and Hiroyuki Ohsaki, “Characteristics of electromagnetic force of EMS-type maglev vehicle using bulk superconductors,” IEEE Trans. Magn. 36, 3683 (2000).

    Google Scholar 

  5. Suyu Wang, Jiasu Wang, Xiaorong Wang, Zhongyou Ren, Youwen Zeng, Changyan Deng, He Jiang, Min Zhu, Guobin Lin, Zhipei Xu, Degui Zhu, and Honghai Song, “The man-loading high-temperature superconducting Maglev test vehicle,” IEEE Trans. Appl. Superconduc. 13, 2134 (2003).

    Google Scholar 

  6. Tomoaki Takao, Akihiro Niiro, Soichiro Suzuki, Masahiro Hashimoto, Hiroki Kamijo, Junichiro Takeda, Toshihiro Kobayashi, and Hiroyuki Fujimoto, “Experimental and numerical analysis of lift force in magnetic levitation system,” IEEE Trans. Appl. Superconduc. 15, 2281 (2005).

    Google Scholar 

  7. Ludwig Schultz, Oliver de Haas, Peter Verges, Christoph Beyer, Steffen Röhlig, Henning Olsen, Lars Kuhn, Dietmar Berger, Ulf Noteboom, and Ullrich Funk, “Superconductively levitated transport system—the SupraTrans project,” IEEE Trans. Appl. Superconduc. 15, 2301 (2005).

    Google Scholar 

  8. W.J. Yang, Z. Wen, Y. Duan, X.D. Chen, M. Qiu, Y. Liu, L.Z. Lin, “Construction and performance of HTS Maglev launch assist test vehicle,” IEEE Trans. Appl. Superconduc. 16, 1124 (2006).

    Google Scholar 

  9. Kenji Tasaki, Kotaro Marukawa, Satoshi Hanai, Taizo Tosaka, Toru Kuriyama, Tomohisa Yamashita, Yasuto Yanase, Mutsuhiko Yamaji, Hiroyuki Nakao, Motohiro Igarashi, Shigehisa Kusada, Kaoru Nemoto, Satoshi Hirano, Katsuyuki Kuwano, Takeshi Okutomi, and Motoaki Terai, “HTS magnet for Maglev applications (1)—coil characteristics,” IEEE Trans. Appl. Superconduc. 16, 1110 (2006).

    Google Scholar 

  10. Jiasu Wang, Suyu Wang, Changyan Deng, Jun Zheng, Honghai Song, Qingyong He, Youwen Zeng, Zigang Deng, Jing Li, Guangtong Ma, Hua Jing, Yonggang Huang, Jianghua Zhang, Yiyu Lu, Lu Liu, Lulin Wang, Jian Zhang, Longcai Zhang, Minxian Liu, Yujie Qin, and Ya Zhang, “Laboratory-scale high temperature superconducting Maglev launch system,” IEEE Trans. Appl. Superconduc. 17, 2091 (2007).

    Google Scholar 

  11. John R. Hull, James Fiske, Ken Ricci, and Michael Ricci, “Analysis of levitational systems for a superconducting launch ring,” IEEE Trans. Appl. Superconduc. 17, 2117 (2007).

    Google Scholar 

Papers Cited in Table 9.7: Magnetic Separation [HTS]

  1. M.A. Daugherty, J.Y. Coulter, W.L. Hults, D.E. Daney, D.D. Hill, D.E. McMurry, M.C. Martinez, L.G. Phillips, J.O. Willis, H.J. Boenig, F.C. Prenger, A.J. Rodenbush, and S. Young, “HTS high gradient magnetic separation system,” IEEE Trans. Appl. Superconduc. 7, 650 (1997).

    Google Scholar 

  2. J. Iannicelli, J. Pechin, M. Ueyama, K. Ohkura, K. Hayashi, K. Sato, A. Lauder and C. Rey, “Magnetic separation of kaolin clay using a high temperature superconducting magnet system,” IEEE Trans. Appl. Superconduc. 7, 1061 (1997).

    Google Scholar 

  3. J.X. Jin, S.X. Dou, H.K. Liu, R. Neale, N. Attwood, G. Grigg, T. Reading, T. Beales, “A high gradient magnetic separator fabricated using Bi-2223/Ag HTS tapes,” IEEE Trans. Appl. Superconduc. 9, 394 (1999).

    Google Scholar 

  4. H. Kumakura, T. Ohara, H. Kitaguchi, K. Togano, H. Wada, H. Mukai, K. Ohmatsu, H. Takei, and H. Okada, “Development of Bi-2223 magnetic separation system,” IEEE Trans. Appl. Superconduc. 11, 2519 (2001).

    Google Scholar 

  5. N. Nishijima, N. Saho, K. Asano, H. Hayashi, K. Tsutsumi, and M. Murakami, “Magnetization method for long high-T c bulk superconductors used for magnetic separation,” IEEE Trans. Appl. Superconduc. 13, 1580 (2003).

    Google Scholar 

  6. C.M. Rey, W.C. Hoffman, Jr., and D.R. Steinhauser, “Test results of a HTS reciprocating magnetic separator,” IEEE Trans. Appl. Superconduc. 13, 1624 (2003).

    Google Scholar 

  7. Shin-Ichi Takeda and Shigehiro Nishijima, “Development of magnetic separation of water-soluble materials using superconducting magnet,” IEEE Trans. Appl. Superconduc. 17, 2178 (2007).

    Google Scholar 

  8. Qiuliang Wang, Yingming Dai, Xinning Hu, Shouseng Song, Yuanzhong Lei, Chuan He, and Luguang Yan, “Development of GM cryocooler-cooled Bi2223 high temperature superconducting magnetic separator,” IEEE Trans. Appl. Superconduc. 17, 2185 (2007).

    Google Scholar 

  9. Dong-Woo Ha, Tae-Hyung Kim, Hong-Soo Ha, Sang-Soo Oh, Sung-Kuk Park, Sang-Kil Lee, and Yu-Mi Roh, “Treatment of coolant of hot rolling process by high gradient magnetic separation,” IEEE Trans. Appl. Superconduc. 17, 2189 (2007).

    Google Scholar 

Papers Cited in Table 9.7: Research Magnets—HEP High Energy Physics [LTS]

  1. Paul J. Reardon, “High energy physics and applied superconductivity,” IEEE Trans. Magn. MAG-13, 704 (1977).

    Google Scholar 

  2. Hiromi Hirabayashi, “Development of superconducting magnets for beam lines and accelerator at KEK,” IEEE Trans. Magn. MAG-17, 728 (1981).

    Google Scholar 

  3. H. Desportes, “Superconducting magnets for accelerators, beam lines and detectors,” IEEE Trans. Magn. MAG-17, 1560 (1981).

    Google Scholar 

  4. H. Brechna, E.J. Bleser, Y.P. Dmitrevskiy, H.E. Fisk, G. Horlitz, J. Goyer, H. Hirabayashi, J. Pérot, “Superconducting magnets for high energy accelerators,” IEEE Trans. Magn. MAG-17, 2355 (1981).

    Google Scholar 

  5. S. Wolff, “Superconducting HERA magnets,” IEEE Trans. Magn. 24, 719 (1988).

    Google Scholar 

  6. R. Perin, “Progress on the superconducting magnets for the Large Hadron Collider IEEE Trans. Magn. 24, 734 (1988).

    Google Scholar 

  7. C. Taylor “SSC magnet technology,” IEEE Trans. Magn. 24, 820 (1988).

    Google Scholar 

  8. P. Brindza, V. Bardos, A. Gavalya, J. O'Meara, W. Tuzel, “Superconducting magnets for CEBAF,” IEEE Trans. Magn. 24, 1264 (1988).

    Google Scholar 

  9. R. Meinke, “Superconducting magnet system for HERA,” IEEE Trans. Magn. 27, 1728 (1991).

    Google Scholar 

  10. F. Wittgenstein, “Detector magnets for high-energy physics,” IEEE Trans. Magn. 28, 104 (1992).

    Google Scholar 

  11. N. Siegel for the LHC Magnet Team, “Status of the Large Hadron Collider and magnet program,” IEEE Trans. Appl. Superconduc. 7, 252 (1997).

    Google Scholar 

  12. Martin N. Wilson, “Superconducting magnets for accelerators: a review,” IEEE Trans. Appl. Superconduc. 7, 727 (1997).

    Google Scholar 

  13. David F. Sutter and Bruce P. Strauss, “Next generation high energy physics colliders: technical challenges and prospects,” IEEE Trans. Appl. Superconduc. 10, 33 (2000).

    Google Scholar 

  14. Lucio Rossi, “The LHC main dipoles and quadrupoles toward series production,” IEEE Trans. Appl. Superconduc. 13, 1221 (2003).

    Google Scholar 

  15. A. Devred, D.E. Baynham, L. Bottura, M. Chorowski, P. Fabbricatore, D. Leroy, A. den Oudem, J.M. Rifflet, L. Rossi, O. Vincent-Viry, and G. Volpini, “High field accelerator magnet R&D in Europe,” IEEE Trans. Appl. Superconduc. 14, 339 (2004).

    Google Scholar 

  16. Akira Yamamoto, “Advances in superconducting magnets for particle physics,” IEEE Trans. Appl. Superconduc. 14, 477 (2004).

    Google Scholar 

  17. D. Elwyn Baynham, “Evolution of detector magnets from CELLO to ATLAS and CMS and towards future developments,” IEEE Trans. Appl. Superconduc. 16, 493 (2006).

    Google Scholar 

Detector Magnets

  1. P.H. Eberhard, M.A. Green, W.B. Michael, J.D. Taylor and W.A. Wenzel, “Tests on large diameter superconducting solenoids designed for colliding beam accelerators,” IEEE Trans. Magn. MAG-13, 78 (1977).

    Google Scholar 

  2. H. Desportes, J. Le Bars, and G. Mayayx, “Construction and test of the CELLO thin-walled solenoid,” Adv. Cryo. Engr. 25, 175 (1980).

    Google Scholar 

  3. W.V. Hassenzahl, “Quenches in the superconducting magnet CELLO,” Adv. Cryo. Engr. 25, 185 (1980).

    Google Scholar 

  4. Stefan Wipf, “Superconducting magnet system for a 750 GeV MUON spectrometer,” IEEE Trans. Magn. MAG-17, 192 (1981).

    Google Scholar 

  5. R.W. Fast, E.W. Bosworth, C.N. Brown, D.A. Finley, A.M. Glowacki, J.M. Jagger and S.P. Sobczynski, “14.4 m large aperture analysis magnet with aluminum coils,” IEEE Trans. Magn. MAG-17, 1903 (1981).

    Google Scholar 

  6. R. Bruzzese, S. Ceresara, G. Donati, S. Rossi, N. Sacchetti, M. Spadoni, “The aluminum stabilized Nb-Ti conductor for the ZEUS thin solenoid,” IEEE Trans. Magn. 25, 1827 (1989).

    Google Scholar 

  7. A. Bonito Oliva, O. Dormicchi, M. Losasso, and Q. Lin, “Zeus thin solenoid: test results analysis,” IEEE Trans. Magn. 27, 1954 (1991).

    Google Scholar 

  8. F. Kircher, P. Brédy, A. Calvo, B. Curé, D. Campi, A. Desirelli, P. Fabbricatore, S. Farinon, A. Hervé, I. Horvath, V. Klioukhine, B. Levesy, M. Losasso, J.P. Lottin, R. Musenich, Y. Pabot, A. Payn, C. Pes, C. Priano, F. Rondeaux, S. Sgobba, “Final design of the CMS solenoid cold mass,” IEEE Trans. Appl. Superconduc. 10, 407 (2000).

    Google Scholar 

  9. A. Dael, B. Gastineau, J.E. Ducret, and V.S. Vysotsky, “Design study of the superconducting magnet for a large acceptance spectrometer,” IEEE Trans. Appl. Superconduc. 12, 353 (2002).

    Google Scholar 

  10. S. Mizumaki, Y. Makida, T. Kobayashi, H. Yamaoka, Y. Kondo, M. Kawai, Y. Doi, T. Haruyama, S. Mine, H. Takano, A. Yamamoto, T. Kondo, and H. ten Kate, “Fabrication and mechanical performance of the ATLAS central solenoid,” IEEE Trans. Appl. Superconduc. 12, 416 (2002).

    Google Scholar 

  11. J.J. Rabbers, A. Dudarev, R. Pengo, C. Berriaud, and H.H.J. ten Kate, “Theoretical and experimental investigation of the ramp losses ln conductor and coil casing of the ATLAS barrel toroid coils,” IEEE Trans. Appl. Superconduc. 16, 549 (2006).

    Google Scholar 

  12. Jean-Michel Rey, Michel Arnaud, Christophe Berriaud, Romain Berthier, Sandrine Cazaux, Alexey Dudarev, Michel Humeau, René Leboeuf, Jean-Paul Gourdin, Christophe Mayri, Chhon Pes, Herman Ten Kate, and Pierre Védrine, “Cold mass integration of the ATLAS barrel toroid magnets at CERN,” IEEE Trans. Appl. Superconduc. 16, 553 (2006).

    Google Scholar 

  13. C. Berriaud, A. Dudarev, J.J. Rabbers, F. Broggi, S. Junker, L. Deront, S. Ravat, E. Adli, G. Olesen, R. Pengo, P. Vedrine, C. Mayri, E. Sbrissa, M. Arnaud, F.P. Juster, J.-M. Rey, G. Volpini, A. Foussat, P. Benoit, R. Leboeuf, M. Humeau, V. Stepanov, A. Olyunin, I. Shugaev, N. Kopeykin, and H.H.J. ten Kate, “On-surface tests of the ATLAS Barrel Toroid Coils: Acceptance criteria and results,” IEEE Trans. Appl. Superconduc. 16, 557 (2006).

    Google Scholar 

  14. Roger Ruber, Yasuhiro Makida, Masanori Kawai, Yoshinari Kondo, Yoshikuni Doi, Tomiyoshi Haruyama, Friedrich Haug, Herman ten Kate, Taka Kondo, Olivier Pirotte, Jos Metselaar, Shoichi Mizumaki, Gert Olesen, Edo Sbrissa, and Akira Yamamoto, “Ultimate performance of the ATLAS superconducting solenoid,” IEEE Trans. Appl. Superconduc. 17, 1201 (2007).

    Google Scholar 

  15. François Kircher, Philippe Brédy, Philippe Fazilleau, François-Paul Juster, Bruno Levesy, Jean-Pierre Lottin, Jean-Yves Roussé, Domenico Campi, Benoît Curé, Andrea Gaddi, Alain Hervé, Giles Maire, Goran Perinić, Pasquale Fabbricatore, and Michela Greco, “Magnetic tests of the CMS superconducting magnet,” IEEE Trans. Appl. Superconduc. 18, 356 (2008).

    Google Scholar 

  16. K. Barth, N. Delruelle, A. Dudarev, G. Passardi, R. Pengo, M. Pezzetti, O. Pirotte, H. Ten Kate, E. Baynham, and C. Mayri, “First cool-down and test at 4.5 K of the ATLAS superconducting barrel toroid assembled in the LHC experimental cavern,” IEEE Trans. Appl. Superconduc. 18, 383 (2008).

    Google Scholar 

  17. Bernard Gastineau, André Donati, Jean-Eric Ducret, Dominique Eppelle, Philippe Fazilleau, Patrick Graffin, Bertrant Hervieu, Denis Loiseau, Jean-Pierre Lottin, Christophe Mayri, Chantal Meuris, Chhon Pes, Yannick Queinec, and Zhihong Sun, “Design status of the R3B-GLAD magnet: large acceptance superconducting dipole with active shielding, graded coils, large forces and indirect cooling by thermosiphon,” IEEE Trans. Appl. Superconduc. 18, 407 (2008).

    Google Scholar 

Dipoles and Quadrupoles

  1. W.B. Sampson, “Superconducting magnets,” IEEE Trans. Magn. MAG-4, 99 (1968).

    Google Scholar 

  2. J. Bywater, M.H. Foss, L.E. Genens, L.G. Hyman, R.P. Smith, L.R. Turner, S.T. Wang, S.C. Snowdon, J.R. Purcell, “A six-tesla superconducting dipole magnet design and development program for POPAE,” IEEE Trans. Magn. MAG-13, 82 (1977).

    Google Scholar 

  3. F. Arendt, N. Fessler, P. Turowski, “Design and construction of superconducting quadrupole magnets at Karlsruhe,” IEEE Trans. Magn. MAG-13, 290 (1977).

    Google Scholar 

  4. A. Dael, F. Kircher, J. Perot, “Use of superconducting self-correcting harmonic coils for pulsed superconducting dipole or multipole magnets,” IEEE Trans. Magn. MAG-11, 459 (1975).

    Google Scholar 

  5. W.E. Cooper, H.E. Fisk, D.A. Gross, R.A. Lundy, E.E. Schmidt & F. Turkot, “Fermilab Tevatron quadrupoles,” IEEE Trans. Magn. MAG-19, 1372 (1983).

    Google Scholar 

  6. P. Dahl, J. Cottingham, M. Garber, A. Ghosh, C. Goodzeit, A. Greene, J. Herrera, S. Kahn, E. Kelly, G. Morgan, A. Prodell, W. Sampson, W. Schnelder, R. Shutt, P. Thompson, P. Wanderer, and E. Willen, “Performance of initial full-length RHIC dipoles,” IEEE Trans. Magn. MAG-24, 723 (1988).

    Google Scholar 

  7. K. Tsuchiya, K. Egawa, K. Endo, Y. Morita, N. Ohuchi, and K. Asano, “Performance of the eight superconducting quadrupole magnets for the TRISTAN low-beta insertions,” IEEE Trans. Magn. 27, 1940 (1991).

    Google Scholar 

  8. J.L. Borne, D. Bouichou, D. Leroy, W. Thomi, “Manufacturing of high (10 tesla) twin aperture superconducting dipole magnet for LHC,” IEEE Trans. Magn. 28, 323 (1992).

    Google Scholar 

  9. J.M. Baze, D. Cacaut, M. Chapman, J.P. Jacquemin, C. Lyraud, C. Michez, Y. Pabot, J. Perot, J.M. Rifflet, J.C. Toussaint, P. Vedrine, R. Perin, N. Siegel, T. Tortschanoff, “Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project,” IEEE Trans. Magn. 28, 335 (1992).

    Google Scholar 

  10. D. Leroy, J. Krzywinski, L. Oberli, R. Perin, F. Rodriguez-Mateos, A. Verweij, L. Walckiers, “Test results on 10 T LHC superconducting one metre long dipole models,” IEEE Trans. Magn. 3, 614 (1993).

    Google Scholar 

  11. L. Coull, D. Hagedorn, V. Remondino, F. Rodriguez-Mateos, “LHC magnet quench protection system,” IEEE Trans. Magn. 30, 1742 (1994).

    Google Scholar 

  12. E. Acerbi, M. Bona, D. Leroy, R. Perin, L. Rossi, “Development and fabrication of the first 10 m long superconducting dipole prototype for the LHC,” IEEE Trans. Magn. 30, 1793 (1994).

    Google Scholar 

  13. P. Vedrine, J.M. Rifflet, J. Perot, B. Gallet, C. Lyraud, P. Giovannoni, F. Le Coz, N. Siegel, T. Tortschanoff, “Mechanical tests on the prototype LHC lattice quadrupole,” IEEE Trans. Magn. 30, 2475 (1994).

    Google Scholar 

  14. Akira Yamamoto, Takakazu Shintomi, Nobuhiro Kimura, Yoshikuni Doi, Tomiyoshi Haruyama, Norio Higashi, Hiromi Hirabayashi, Hiroshi Kawamata, Seog-Whan Kim, Takamitsu M. Kobayashi, Yasuhiro Makida, Toru Ogitsu, Norihito Ohuchi, Ken-ichi Tanaka, Akio Terashima, Kiyosumi Tsuchiya, Hiroshi Yamaoka, Giorgio Brianti, Daniel Leroy, Romeo Perin, Shoichi Mizumaki, Shuichi Kato, Kenji Makishima, Tomohumi Orikasa, Tomoaki Maeto, Akira Tanaka, “Test results of a single aperture 10 tesla dipole model magnet for the Large Hadron Collider,” IEEE Trans. Magn. 32, 2116 (1996).

    Google Scholar 

  15. S. Jongeleen, D. Leroy, A. Siemko and R. Wolf, “Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables,” IEEE Trans. Appl. Superconduc. 7, 179 (1997).

    Google Scholar 

  16. Timothy Elliott, Andrew Jaisle, Damir Latypov, Peter McIntyre, Philip McJunkins, Weijun Shen, Rainer Soika, Rudolph M. Gaedke, “16 tesla Nb3Sn dipole development at Texas A&M University,” IEEE Trans. Appl. Superconduc. 7, 555 (1997).

    Google Scholar 

  17. A.K. Ghosh, A. Prodell, W.B. Sampson, R.M. Scanlan, D. Leroy, and L.B. Oberli, “Minimum quench energy measurements on prototype LHC inner cables in normal helium at 4.4 K and in superfluid He at 1.9 K,” IEEE Trans. Appl. Superconduc. 9, 257 (1999).

    Google Scholar 

  18. D.E. Baynham, D.A. Cragg, R.C. Coombs, P. Bauer, R. Wolf, “Transient stability of LHC strands,” IEEE Trans. Appl. Superconduc. 9, 1109 (1999).

    Google Scholar 

  19. K. Artoos, T. Kurtyka, F. Savary, R. Valbuena, J. Vlogaert, “Measurement and analysis of axial end forces in a full-length prototype of LHC main dipole magnets,” IEEE Trans. Appl. Superconduc. 10, 69 (2000).

    Google Scholar 

  20. Walter Scandale, Ezio Todesco and Paola Tropea, “Influence of mechanical tolerances on field quality in the LHC main dipoles,” IEEE Trans. Appl. Superconduc. 10, 73 (2000).

    Google Scholar 

  21. R.M. Scanlan, D.R. Dietderich, and H.C. Higley, “Conductor development for high field dipole magnets,” IEEE Trans. Appl. Superconduc. 10, 288 (2000).

    Google Scholar 

  22. S.A. Gourlay, P. Bish, S. Caspi, K. Chow, D.R. Dietderich, R. Gupta, R. Hannaford, W. Harnden, H. Higley, A. Lietzke, N. Liggins, A.D. McInturff, G.A. Millos, L. Morrison, R.M. Scanlan, “Design and fabrication of a 14 T, Nb3Sn superconducting racetrack dipole magnet,” IEEE Trans. Appl. Superconduc. 10, 294 (2000).

    Google Scholar 

  23. V. Maroussov, S. Sanfilippo, A. Siemko, “Temperature profiles during quenches in LHC superconducting dipole magnets protected by quench heaters,” IEEE Trans. Appl. Superconduc. 10, 661 (2000).

    Google Scholar 

  24. L. Bottura, P. Pugnat, A. Siemko, J. Vlogaert, and C. Wyss, “Performance of the LHC final design full scale superconducting dipole prototypes,” IEEE Trans. Appl. Superconduc. 11, 1554 (2001).

    Google Scholar 

  25. Peter McIntyre, Raymond Blackburn, Nicholai Diaczenko, Tim Elliott, Rudolph Gaedke, Bill Henchel, Ed Hill, Mark Johnson, Hans Kautzky, and Akhdior Sattarov, “12 Tesla hybrid block-coil dipole for future hadron colliders,” IEEE Trans. Appl. Superconduc. 11, 2264 (2001).

    Google Scholar 

  26. F. Simon, C. Gourdin, T. Schild, J. Deregel, A. Devred, B. Hervieu, M. Peyrot, J.M. Rifflet, T. Tortschanoff, T. Ogitsu, K. Tsuchiya, “Test results of the third LHC main quadrupole magnet prototype at CEA/Saclay,” IEEE Trans. Appl. Superconduc. 12, 266 (2002).

    Google Scholar 

  27. T. Ogitsu, T. Nakamoto, N. Ohuchi, Y. Ajima, E. Burkhardt, N. Higashi, H. Hirano, M. Iida, N. Kimura, H. Ohhata, K. Tanaka, T. Shintomi, A. Terashima, K. Tsuchiya, A. Yamamoto, T. Orikasa, S. Murai, O. Oosaki, “Status of the LHC low-beta insertion quadrupole magnet development at KEK,” IEEE Trans. Appl. Superconduc. 12, 183 (2002).

    Google Scholar 

  28. P. Fessia, C. Lanza, D. Perini, and T. Verbeeck, “First experience in the mass production of components for the LHC dipoles,” IEEE Trans. Appl. Superconduc. 12, 1256 (2002).

    Google Scholar 

  29. Andrew V. Gavrilin, Mark D. Bird, Victor E. Keilin, and Alexey V. Dudarev, “New concepts in transverse field magnet design,” IEEE Trans. Appl. Superconduc. 13, 1213 (2003).

    Google Scholar 

  30. Ryuji Yamada and Masayoshi Wake, “Quench problems of Nb3Sn cosine theta high field dipole model magnets,” IEEE Trans. Appl. Superconduc. 15, 1140 (2005).

    Google Scholar 

  31. M. Calvi, E. Floch, S. Kouzue, and A. Siemko, “Improved quench localization and quench propagation velocity measurements in the LHC superconducting dipole magnets,” IEEE Trans. Appl. Superconduc. 15, 1209 (2005).

    Google Scholar 

  32. S. Feher, R.C. Bossert, G. Ambrosio, N. Andreev, E. Barzi, R. Carcagno, V.S. Kashikhin, V.V. Kashikhin, M.J. Lamm, F. Nobrega, I. Novitski, Y. Pischalnikov, C. Sylvester, M. Tartaglia, D. Turrioni, G. Whitson, R. Yamada, A.V. Zlobin, S. Caspi, D. Dietderich, P. Ferracin, R. Hannaford, A.R. Hafalia, and G. Sabbi, “Development and test of LARP technological quadrupole (TQC) magnet IEEE Trans. Appl. Superconduc. 17, 1126 (2007).

    Google Scholar 

  33. S. Caspi, D.R. Dietderich, P. Ferracin, N.R. Finney, M.J. Fuery, S.A. Gourlay, and A.R. Hafalia, “Design, fabrication, and test of a superconducting dipole magnet based on tilted solenoids,” IEEE Trans. Appl. Superconduc. 17, 2266 (2007).

    Google Scholar 

  34. F. Nobrega, N. Andreev, G. Ambrosio, E. Barzi, R. Bossert, R. Carcagno, G. Chlachidze, S. Feher, V.S. Kashikhin, V.V. Kashikhin, M.J. Lamm, I. Novitski, D. Orris, Y. Pischalnikov, C. Sylvester, M. Tartaglia, D. Turrioni, R. Yamada, and A.V. Zlobin, “Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils,” IEEE Trans. Appl. Superconduc. 18, 273 (2008).

    Google Scholar 

  35. Paul D. Brindza, Steven R. Lassiter, and Michael J. Fowler, “The cosine two theta quadrupole magnets for the Jefferson Lab super high momentum spectrometer,” IEEE Trans. Appl. Superconduc. 18, 415 (2008).

    Google Scholar 

High Energy Physics [HTS]

  1. William B. Sampson, Arup K. Ghosh, John P. Cozzolino, Michael A. Harrison, and Peter J. Wanderer, “Persistent current effects in BSCCO common coil dipoles,” IEEE Trans. Appl. Superconduc. 11, 2156 (2001).

    Google Scholar 

  2. A.I. Ageev, I.I. Akirnov, A.M. Andriishchin, I.V. Bogdanov, S.S. Kozub, K.P. Myznikov, D.N. Rakov, A.V. Rekudanov, P.A. Shcherbakov, P.I. Slabodchikov, A.A. Seletsky, A.K. Shikov, V.V. Sytnik, A.V. Tikhov, L.M. Tkachenko, and V.V. Zubko, “Test results of HTS dipole,” IEEE Trans. Appl. Superconduc. 12, 125 (2002).

    Google Scholar 

  3. Hiromi Hirabayashi, Nobuhiro Kimura, Yasuhiro Makida, and Takakazu Shintomi, “Hydrogen cooled superferric magnets for accelerators and beam lines,” IEEE Trans. Appl. Superconduc. 14, 329 (2004).

    Google Scholar 

  4. R. Gupta, M. Anerella, J. Cozzolino, J. Escallire, G. Ganetis, A. Ghosh, M. Harrison, A. Marone, J. Muratore, J. Schmalzle, W. Sampson, and P. Wanderer, “Status of high temperature superconductor magnet R&D at BNL,” IEEE Trans. Appl. Superconduc. 14, 1198 (2004).

    Google Scholar 

  5. A. Godeke, D. Cheng, D.R. Dietderich, C.D. English, H. Felice, C.R. Hannaford, S.O. Prestemon, G. Sabbi, R.M. Scanlan, Y. Hikichi, J. Nishioka, and T. Hasegawa, “Development of wind-and-react Bi-2212 accelerator magnet technology,” IEEE Trans. Appl. Superconduc. 18, 516 (2008).

    Google Scholar 

Table 9.7: Research Magnets—High-Field DC Solenoids HTS & LTS/HTS (Includes Cryogen-Free Above ∼10 T LTS)

  1. T. Kitamura, T. Hasegawa, H. Ogiwara, “Design and fabrication of Bi-based superconducting coil,” IEEE Trans. Appl. Superconduc. 3, 939 (1993).

    Google Scholar 

  2. D. Aized, M.D. Manlief, C.H. Joshi, “Performance of high temperature superconducting coils in high background fields at different temperatures,” IEEE Trans. Magn. 30, 2010 (1994).

    Google Scholar 

  3. Richard G. Jenkins, Harry Jones, Ming Yang, Michael J. Goringe, and Christopher R.M. Grovenor, “The construction and performance of BSCCO 2212 coils for use in liquid nitrogen at 64 K on an iron yoke in demonstrator devices,” IEEE Trans. Appl. Superconduc. 5, 503 (1995).

    Google Scholar 

  4. Pradeep Haldar, James G. Hoehn, Jr., Y. Iwasa, L. Lim, M. Yunus,“Development of Bi-2223 HTS high field coils and magnets,” IEEE Trans. Appl. Superconduc. 5, 512 (1995).

    Google Scholar 

  5. Drew W. Hazelton, Joseph A. Rice, Yusuf S. Hascicek, Huub W. Weijers and Steven W. Van Sciver, “Development and test of a BSCCO-2223 HTS high field insert magnet for NMR,” IEEE Trans. Appl. Superconduc. 5, 789 (1995).

    Google Scholar 

  6. J.F. Picard, M. Zouiti, C. Levillain, M. Wilson, D. Ryan, K. Marken, P.F. Hermann, E. Béghin, T. Verhaege, Y. Parasie, J. Bock, M. Baecker, J.A.A.J. Perenboom, J. Paasi, “Technologies for high field HTS magnets,” IEEE Trans. Appl. Superconduc. 9, 535 (1999).

    Google Scholar 

  7. G. Snitchler, S.S. Kalsi, M. Manlief, R.E. Schwall, A. Sidi-Yekhief, S. Ige, R. Medeiros, T.L. Francavilla, D.U. Gubser, “High-field warm-bore HTS conduction cooled magnet,” IEEE Trans. Appl. Superconduc. 9, 553 (1999).

    Google Scholar 

  8. Michiya Okada, Kazuhide Tanaka, Tsuyoshi Wakuda, Katsumi Ohata, Junichi Sato, Hiroaki Kumakura, Tsukasa Kiyoshi, Hitoshi Kitaguchi, Kazumasa Togano and Hitoshi Wada, “Fabrication of Bi-2212/Ag magnets for high magnetic field applications,” IEEE Trans. Appl. Superconduc. 9, 920 (1999).

    Google Scholar 

  9. K. Ohmatsu, S. Hahakura, T. Kato, K. Fujino, K. Ohkura and K. Sato, “Recent progress of HTS magnet using Bi-2223 Ag-sheathed wire,” IEEE Trans. Appl. Superconduc. 9, 924 (1999).

    Google Scholar 

  10. M. Newson, D.T. Ryan, M.N. Wilson and H. Jones, “High Tc insert coils for high field superconducting magnets-the Oxford programme,” IEEE Trans. Appl. Superconduc. 10, 468 (2000).

    Google Scholar 

  11. Tsukasa Kiyoshi, Michio Kosuge, Michinari Yuyama, Hideo Nagai, Hitoshi Wada, Hitoshi Kitaguchi, Michiya Okada, Kazuhide Tanaka, Tsuyoshi Wakuda, Katsumi Ohata, and Junichi Sato, “Generation of 23.4 T using two Bi-2212 insert coils,” IEEE Trans. Appl. Superconduc. 10, 472 (2000).

    Google Scholar 

  12. Sang-Soo Oh, Hong-Soo Ha, Hyun-Man Jang, Dong-Woo Ha, Rock-Kil Ko, Young-Kil Kwon, Kang-Sik Ryu, Haigun Lee, Benjamin Haid, and Yukikazu Iwasa, “Fabrication of Bi-2223 HTS magnet with a superconducting switch,” IEEE Trans. Appl. Superconduc. 11, 1808 (2001).

    Google Scholar 

  13. So Noguchi, Makoto Yamashita, Hideo Yamashita, and Atsushi Ishiyama, “An optimal design method for superconducting magnets using HTS tape,” IEEE Trans. Appl. Superconduc. 11, 2308 (2001).

    Google Scholar 

  14. H. Morita, M. Okada, K. Tanaka, J. Sato, H. Kitaguchi, H. Kumakura, K. Togano, K. Itoh, and H. Wada, “10 T conduction cooled Bi-2212/Ag HTS solenoid magnet system,” IEEE Trans. Appl. Superconduc. 11, 2523 (2001).

    Google Scholar 

  15. Weijun Shen, Michael Coffey, Wayne McGhee, “Development of 9.5 T cryogen-free magnet,” IEEE Trans. Appl. Superconduc. 11, 2619 (2001).

    Google Scholar 

  16. Tsukasa Kiyoshi, Shinji Matsumoto, Michio Kosuge, Michinari Yuyama, Hideo Nagai, Fumiaki Matsumoto, and Hitoshi Wada, “Superconducting inserts in highfield solenoids,” IEEE Trans. Appl. Superconduc. 12, 470 (2002).

    Google Scholar 

  17. V. Cavaliere, M. Cioffi, A. Formisanao, and R. Martone, “Shape optimization of high Tc superconducting magnets,” IEEE Trans. Magn. 38, 1129 (2002).

    Google Scholar 

  18. H.W. Weijers, Y.S. Hascicek, K. Marken, A. Mbaruku, M. Meinesz, H. Miao, S.H. Thompson, F. Trillaud, U.P. Trociewitz, and J. Schwartz, “Development of a 5 T HTS insert magnet as part of 25 T class magnets,” IEEE Trans. Appl. Superconduc. 13, 1396 (2003).

    Google Scholar 

  19. Xiaohua Jiang, Xu Chu, Jie Yang, Nengqiang Jin, Zhiguang Cheng, Zhenmin Chen, Luhai Gou, and Xiaopeng Ren, “Development of a solenoidal HTS coil cooled by liquid or gas helium,” IEEE Trans. Appl. Superconduc. 13, 1871 (2003).

    Google Scholar 

  20. Kazutomi Miyoshi, Masanao Mimura, Shin-ichiro Meguro, Takayo Hasegawa, Takashi Saitoh, Naoji Kashima, and Shigeo Nagaya, “Development of HTS coil with Bi-2223 transposed segment conductor,” IEEE Trans. Appl. Superconduc. 14, 766 (2004).

    Google Scholar 

  21. F. Hornung, M. Kläser, T. Schneider, “Usage of Bi-HTS in high field magnets,” IEEE Trans. Appl. Superconduc. 14, 1102 (2004).

    Google Scholar 

  22. R. Musenich, P. Fabbricatore, S. Farinon, C. Ferdeghini, G. Grasso, M. Greco, A. Malagoli, R. Marabotto, M. Modica, D. Nardelli, A.S. Siri, M. Tassisto, and A. Tumino, “Behavior of MgB2 react & wind coils above 10 K,” IEEE Trans. Appl. Superconduc. 15, 1452 (2005).

    Google Scholar 

  23. M. Beckenbach, F. Hornung, M. Kläser, P. Leys, B. Lott, and Th. Schneider, “Manufacture and test of a 5 T Bi-2223 insert coil,” IEEE Trans. Appl. Superconduc. 15, 1484 (2005).

    Google Scholar 

  24. Kenji Tasaki, Michitaka Ono, Toru Kuriyama, Makoto Kyoto, Satoshi Hanai, Hiroyuki Takigami, Hirohisa Takano, Kazuo Watanabe, Satoshi Awaji, Gen Nishijima, and Kazumasa Togano, “Development of a Bi2223 insert coil for a conduction-cooled 19 T superconducting magnet,” IEEE Trans. Appl. Superconduc. 15, 1512 (2005).

    Google Scholar 

  25. R. Hirose, S. Hayashi, S. Fukumizu, Y. Muroo, H. Miyaka, Y. Okui, A. Ioki, T. Kamikado, O. Ozaki, Y. Nunoya, and K. Okuno, “Development of 15 T cryogen-free superconducting magnets,” IEEE Trans. Magn. 16, 953 (2006).

    Google Scholar 

  26. L'ubomír Kopera, Pavol Ková, and Tibor Melis, “Compact design of cryogen-free HTS magnet for laboratory use,” IEEE Trans. Magn. 16, 1415 (2006).

    Google Scholar 

  27. Takashi Hase, Mamoru Hamada, Ryoichi Hirose, Yasuhide Nagahama, Koji Shikimachi, and Shigeo Nagaya, “Fabrication test of YBCO coil and multi-tape conductor,” IEEE Trans. Appl. Superconduc. 17, 2216 (2007).

    Google Scholar 

  28. Justin Schwartz, Timothy Effio, Xiaotao Liu, Quang V. Le, Abdallah L. Mbaruku, Hans J. Schneider-Muntau, Tengming Shen, Honghai Song, Ulf P. Trociewitz, Xiaorong Wang, and Hubertus W. Weijers, “High field superconducting solenoids via high temperature superconductors,” IEEE Trans. Appl. Superconduc. 18, 70 (2008).

    Google Scholar 

Papers Cited in Table 9.7: Research Magnets—nmr/mri nmr/mri [lts]

  1. J.E.C. Williams, L.J. Neuringer, E. Bobrov, R. Weggel, D.J. Ruben, and W.G. Harrison, “Magnet system of the 500 MHz NMR spectrometer at the Francis Bitter National Magnet Laboratory: I. Design and development of the magnet,” Rev. Sci. Instrum. 52, 649 (1981).

    Google Scholar 

  2. E.S. Bobrov, R.D. Pillsbury, Jr., W.F.B. Punchard, R.E. Schwall, H.R. Segal, J.E.C. Williams, and L.J. Neuringer, “A 60 cm bore 2.0 tesla high homogeneity magnet for magnetic resonance imaging,” IEEE Trans. Magn. 23, 1303 (1987).

    Google Scholar 

  3. W.D. Markiewicz, I.R. Dixon, C.A. Swenson, W.S. Marshall, T.A. Painter, S.T. Bole, T. Cosmus, M. Parizh, M. King, G. Ciancetta, “900 MHz wide bore NMR spectrometer magnet at NHMFL,” IEEE Trans. Appl. Superconduc. 10, 728 (2000).

    Google Scholar 

  4. Tsukasa Kiyoshi, Shinji Matsumoto, Akio Sato, Masatoshi Yoshikawa, Satoshi Ito, Osamu Okazaki, Takayoshi Miyazaki, Takashi Miki, Takashi Hase, Mamoru Hamada, Takashi Noguchi, Shigeo Fukui, and Hitoshi Wada, “Operation of a 930 MHz high resolution NMR magnet at TML,” IEEE Trans. Appl. Superconduc. 15, 1330 (2005).

    Google Scholar 

  5. M. Tsuchiya, T. Wakuda, K. Maki, T. Shino, H. Tanaka, N. Saho, H. Tsukamoto, S. Kido, K. Takeuchi, M. Okada, and H. Kitaguchi, “Development of superconducting split magnets for NMR spectrometer,” IEEE Trans. Magn. 18, 840 (2008).

    Google Scholar 

  6. Th. Schild, G. Aubert, C. Berriaud, Ph. Bredy, F.P. Juster, C. Meuris, F. Nunio, L. Quettier, J.M. Rey, and P. Vedrine, “The Iseult/Inumac whole body 11.7T MRI magnet design,” IEEE Trans. Magn. 18, 904 (2008).

    Google Scholar 

nmr [lts/hts]

  1. Tsukasa Kiyoshi, Shinji Matsumoto, Michio Kosuge, Michinari Yuyama, Hideo Nagai, Fumiaki Matsumoto, and Hitoshi Wada, “Superconducting inserts in highfield solenoids,” IEEE Trans. Appl. Superconduc. 12, 470 (2002).

    Google Scholar 

  2. Haigun Lee, Juan Bascuñán, and Yukikazu Iwasa, “A high-temperature superconducting (HTS) insert comprised of double pancakes for an NMR magnet,” IEEE Trans. Appl. Superconduc. 13, 1546 (2003).

    Google Scholar 

  3. W. Denis Markiewicz, John R. Miller, Justin Schwartz, Ulf P. Trociewitz, and Huub Weijers, “Perspective on a superconducting 30 T/1.3GHz NMR spectrometer magnet,” IEEE Trans. Appl. Superconduc. 16, 1523 (2006).

    Google Scholar 

  4. Juan Bascuñán, Wooseok Kim, Seungyong Hahn, Emanuel S. Bobrov, Haigun Lee, and Yukikazu Iwasa, “An LTS/HTS NMR magnet operated in the range 600–700 MHz,” IEEE Trans. Appl. Superconduc. 17, 1446 (2007).

    Google Scholar 

  5. T. Kiyoshi, A. Otsuka, S. Choi, S. Matsumoto, K. Zaitsu, T. Hase, M. Hamada, M. Hosono, M. Takahashi, T. Yamazaki, and H. Maeda, “NMR upgrading project towards 1.05 GHz,” IEEE Trans. Appl. Superconduc. 18, 860 (2008).

    Google Scholar 

mri [hts]

  1. Minfeng Xu, Michele Ogle, Xianrui Huang, Kathleen Amm, Evangelos T. Laskaris, “Iterative EM design of an MRI magnet using HTS materials,” IEEE Trans. Appl. Superconduc. 17, 2192 (2007).

    Google Scholar 

  2. M. Modica, S. Angius, L. Bertora, D. Damiani, M. Marabotto, D. Nardelli, M. Perrella, M. Razeti, and M. Tassisto, “Design, construction and tests of MgB2 coils for the development of a cryogen free magnet,” IEEE Trans. Appl. Superconduc. 17, 2196 (2007).

    Google Scholar 

  3. Roberto Penco and Giovanni Grasso, “Recent development of MgB2-based large scale applications,” IEEE Trans. Appl. Superconduc. 17, 2291 (2007).

    Google Scholar 

  4. Marco Razeti, Silvano Anguis, Leonardo Bertora, Daniele Damiani, Roberto Marabotto, Marco Modica, Davide Nardelli, Mauro Perrela, and Matteo Tassisto, “Construction and operation of cryogen free MgB2 magnets for open MRI system,” IEEE Trans. Appl. Superconduc. 18, 882 (2008).

    Google Scholar 

  5. Weijun Yao, Juan Bascuñán, Woo-Seok Kim, Seungyong Hahn, Haigun Lee, and Yukikazu Iwasa, “A solid nitrogen cooled MgB2 ‘demonstration’ coil for MRI applications,” IEEE Trans. Appl. Superconduc. 18, 912 (2008).

    Google Scholar 

Papers Cited in Table 9.7: Silicon Wafer Processing [HTS]

  1. M. Ono, K. Tasaki, Y. Ohotani, T. Kuriyama, Y. Sumiyoshi, S. Nomura, M. Kyoto, T. Shimonosono, S. Hanai, M. Shoujyu, N. Ayai, T. Kaneko, S. Kobayashi, K. Hayashi, H. Takei, K. Sato, T. Mizuishi, M. Kimura, and T. Masui, “Testing of a cryocooler-cooled HTS magnet with silver-sheathed Bi2223 tapes for silicon single-crystal growth applications,” IEEE Trans. Appl. Superconduc. 12, 984 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukikazu Iwasa .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Iwasa, Y. (2009). SOLENOID EXAMPLES, HTS MAGNETS & CONCLUDING REMARKS. In: Case Studies in Superconducting Magnets. Springer, Boston, MA. https://doi.org/10.1007/b112047_9

Download citation

  • DOI: https://doi.org/10.1007/b112047_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09799-2

  • Online ISBN: 978-0-387-09800-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics