Skip to main content

Effect of Cancer Treatment on Neural Stem and Progenitor Cells

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 150))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carey PJ. Drug-induced myelosuppression: diagnosis and management. Drug Saf. 2003;26:691–706.

    Article  PubMed  CAS  Google Scholar 

  2. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–1710.

    Article  PubMed  CAS  Google Scholar 

  3. Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol. 1999;9:135–141.

    Article  PubMed  CAS  Google Scholar 

  4. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  5. Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron. 1997;19:773–785.

    Article  PubMed  CAS  Google Scholar 

  6. Rao MS, Noble M, Mayer-Proschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA. 1998;95:3996–4001.

    Article  PubMed  CAS  Google Scholar 

  7. Dietrich J, Noble M, Mayer-Proschel M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia. 2002;40:65–77.

    Article  PubMed  Google Scholar 

  8. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479–494.

    Article  PubMed  CAS  Google Scholar 

  9. Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338–1340.

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–686.

    Article  PubMed  CAS  Google Scholar 

  11. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427:740–4.

    Article  PubMed  CAS  Google Scholar 

  12. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494:415–434.

    Article  PubMed  Google Scholar 

  13. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  14. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11:173–189.

    Article  PubMed  CAS  Google Scholar 

  15. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996;271:978–981.

    Article  PubMed  CAS  Google Scholar 

  16. Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315:1243–1249.

    Article  PubMed  CAS  Google Scholar 

  17. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319–335.

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–2033.

    PubMed  CAS  Google Scholar 

  19. Hastings NB, Seth MI, Tanapat P, Rydel TA, Gould E. Granule neurons generated during development extend divergent axon collaterals to hippocampal area CA3. J Comp Neurol. 2002;452:324–333.

    Article  PubMed  Google Scholar 

  20. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–417.

    Article  PubMed  CAS  Google Scholar 

  21. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–1034.

    Article  PubMed  Google Scholar 

  22. Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9:439–447.

    Article  PubMed  CAS  Google Scholar 

  23. Marmur R, Mabie PC, Gokhan S, Song Q, Kessler JA, Mehler MF. Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev Biol. 1998;204:577–591.

    Article  PubMed  CAS  Google Scholar 

  24. Arsenijevic Y, Villemure JG, Brunet JF, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001;170:48–62.

    Article  PubMed  CAS  Google Scholar 

  25. Coles BL, Angenieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA. 2004;101:15772–15777.

    Article  PubMed  CAS  Google Scholar 

  26. Temple S. The development of neural stem cells. Nature. 2001;414:112–117.

    Article  PubMed  CAS  Google Scholar 

  27. Hitoshi S, Tropepe V, Ekker M, van der Kooy D. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development. 2002;129:233–244.

    PubMed  CAS  Google Scholar 

  28. Shen Q, Wang Y, Dimos JT, et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 2006;9:743–751.

    Article  PubMed  CAS  Google Scholar 

  29. Dietrich J, Kempermann G. Role of endogenous neural stem cells in neurological disease and brain repair. Adv Exp Med Biol. 2006;557:191–220.

    Article  PubMed  CAS  Google Scholar 

  30. Goldman JE, Zerlin M, Newman S, Zhang L, Gensert J. Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci. 1997;19:42–48.

    Article  PubMed  CAS  Google Scholar 

  31. Marshall CA, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia. 2003;43:52–61.

    Article  PubMed  Google Scholar 

  32. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol. 2004;44:399–421.

    Article  PubMed  CAS  Google Scholar 

  33. Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8:955–962.

    Article  PubMed  CAS  Google Scholar 

  34. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16:129–134.

    Article  PubMed  Google Scholar 

  35. Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol. 2006;5:22.

    Article  PubMed  Google Scholar 

  36. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6:1215–1228.

    Article  PubMed  CAS  Google Scholar 

  37. Packer RJ, Meadows AT, Rorke LB, Goldwein JL, D'Angio G. Long-term sequelae of cancer treatment on the central nervous system in childhood. Med Pediatr Oncol. 1987;15:241–253.

    Article  PubMed  CAS  Google Scholar 

  38. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39:789–796.

    PubMed  CAS  Google Scholar 

  39. Duffner PK. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist. 2004;10:293–310.

    Article  PubMed  Google Scholar 

  40. Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol. 2006;111:197–212.

    Article  PubMed  CAS  Google Scholar 

  41. Abayomi OK. Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol. 1996;35:659–663.

    Article  PubMed  CAS  Google Scholar 

  42. Oppenheimer JH, Levy ML, Sinha U, et al. Radionecrosis secondary to interstitial brachytherapy: correlation of magnetic resonance imaging and histopathology. Neurosurgery. 1992;31:336–343.

    Article  PubMed  CAS  Google Scholar 

  43. Morris JG, Grattan-Smith P, Panegyres PK, O'Neill P, Soo YS, Langlands AO. Delayed cerebral radiation necrosis. Q J Med. 1994;87:119–129.

    PubMed  CAS  Google Scholar 

  44. Chong VE, Fan YF. Radiation-induced temporal lobe necrosis. AJNR Am J Neuroradiol. 1997;18:784–785.

    PubMed  CAS  Google Scholar 

  45. Lai R, Abrey LE, Rosenblum MK, DeAngelis LM. Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology. 2004;62:451–456.

    PubMed  Google Scholar 

  46. Fouladi M, Chintagumpala M, Laningham FH, et al. White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol. 2004;22:4551–4560.

    Article  PubMed  Google Scholar 

  47. Robain O, Dulac O, Dommergues JP, et al. Necrotising leukoencephalopathy complicating treatment of childhood leukemia. J Neurol Neurosurg Psychiatry. 1984;47:65–72.

    Article  PubMed  CAS  Google Scholar 

  48. Asai A, Matsutani M, Kohno T, et al. Subacute brain atrophy after radiation therapy for malignant brain tumor. Cancer. 1989;63:1962–1974.

    Article  PubMed  CAS  Google Scholar 

  49. Rubin P, Gash DM, Hansen JT, Nelson DF, Williams JP. Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother Oncol. 1994;31:51–60.

    Article  PubMed  CAS  Google Scholar 

  50. Omuro AM, Ben-Porat LS, Panageas KS, et al. Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol. 2005;62:1595–1600.

    Article  PubMed  Google Scholar 

  51. Behin A, Delattre JY. Complications of radiation therapy on the brain and spinal cord. Semin Neurol. 2004;24:405–417.

    Article  PubMed  Google Scholar 

  52. Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity – molecular and cellular mechanisms. Br J Cancer. 2001;85:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  53. Noble M, Dietrich J. Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci. 2002;25:103–7.

    Article  PubMed  CAS  Google Scholar 

  54. Fike JR, Rola R, Limoli CL. Radiation response of neural precursor cells. Neurosurg Clin N Am. 2007;18:115–27, x.

    Article  PubMed  Google Scholar 

  55. Parent JM, Tada E, Fike JR, Lowenstein DH. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci. 1999;19:4508–4519.

    PubMed  CAS  Google Scholar 

  56. Tada E, Parent JM, Lowenstein DH, Fike JR. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience. 2000;99:33–41.

    Article  PubMed  CAS  Google Scholar 

  57. Fukuda H, Fukuda A, Zhu C, et al. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ. 2004;11:1166–1178.

    Article  PubMed  CAS  Google Scholar 

  58. Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat Res. 2004;161:17–27.

    Article  PubMed  CAS  Google Scholar 

  59. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63:4021–7.

    PubMed  CAS  Google Scholar 

  60. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–1765.

    Article  PubMed  CAS  Google Scholar 

  61. Palmer TD. Adult neurogenesis and the vascular Nietzsche. Neuron. 2002;34:856–858.

    Article  PubMed  CAS  Google Scholar 

  62. Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche. Science. 2004;304:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  63. Monje ML, Vogel H, Masek M, Ligon KL, Fisher PG, Palmer TD.Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol. 2007;62(5):515–520.

    Google Scholar 

  64. Moore AH, Noble M, O'Banion MK, Dietrich J. Evaluation of cell proliferation, apoptosis and gliosis following neonatal brain irradiation. In: Proceedings of the Society for Neuroscience; 2004:940.12.

    Google Scholar 

  65. Chari DM, Huang WL, Blakemore WF. Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue. J Neurosci Res. 2003;73:787–793.

    Article  PubMed  CAS  Google Scholar 

  66. Posner JB. Side effects of chemotherapy. In: Posner JB, ed. Neurologic Complications of Cancer. Philadelphia: F.A. Davis; 1995:282–310.

    Google Scholar 

  67. Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998;245:695–708.

    Article  PubMed  CAS  Google Scholar 

  68. Dietrich J, Wen P. Neurologic Complications of Chemotherapy. 2. edition ed. Totowa, New Jersey: Humana Press Inc.; 2008.

    Google Scholar 

  69. Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer. 1999;85:640–650.

    Article  PubMed  CAS  Google Scholar 

  70. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2000;18:2695–2701.

    PubMed  CAS  Google Scholar 

  71. Duffner PK. The long term effects of chemotherapy on the central nervous system. J Biol 2006;5:21.

    Article  PubMed  Google Scholar 

  72. Shapiro WR, Chernik NL, Posner JB. Necrotizing encephalopathy following intraventricular instillation of methotrexate. Arch Neurol. 1973;28:96–102.

    Article  PubMed  CAS  Google Scholar 

  73. Bashir R, Hochberg FH, Linggood RM, Hottleman K. Pre-irradiation internal carotid artery BCNU in treatment of glioblastoma multiforme. J Neurosurg. 1988;68:917–919.

    Article  PubMed  CAS  Google Scholar 

  74. Rosenblum MK, Delattre JY, Walker RW, Shapiro WR. Fatal necrotizing encephalopathy complicating treatment of malignant gliomas with intra-arterial BCNU and irradiation: a pathological study. J Neurooncol. 1989;7:269–281.

    Article  PubMed  CAS  Google Scholar 

  75. Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr Treat Options Oncol. 2005;6:519–530.

    Article  PubMed  Google Scholar 

  76. Fliessbach K, Helmstaedter C, Urbach H, et al. Neuropsychological outcome after chemotherapy for primary CNS lymphoma: a prospective study. Neurology. 2005;64:1184–1188.

    Article  PubMed  CAS  Google Scholar 

  77. Neuwelt EA, Guastadisegni PE, Varallyay P, Doolittle ND. Imaging changes and cognitive outcome in primary CNS lymphoma after enhanced chemotherapy delivery. AJNR Am J Neuroradiol. 2005;26:258–265.

    PubMed  Google Scholar 

  78. Dropcho EJ. Neurotoxicity of cancer chemotherapy. Semin Neurol. 2004;24:419–426.

    Article  PubMed  Google Scholar 

  79. Minisini A, Atalay G, Bottomley A, Puglisi F, Piccart M, Biganzoli L. What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol. 2004;5:273–282.

    Article  PubMed  Google Scholar 

  80. Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100:2292–2299.

    Article  PubMed  CAS  Google Scholar 

  81. Morris GM, Hopewell JW, Morris AD. A comparison of the effects of methotrexate and misonidazole on the germinal cells of the subependymal plate of the rat. Br J Radiol. 1995;68:406–412.

    Article  PubMed  CAS  Google Scholar 

  82. Rzeski W, Pruskil S, Macke A, et al. Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol. 2004;56:351–360.

    Article  PubMed  CAS  Google Scholar 

  83. Nutt CL, Noble M, Chambers AF, Cairncross JG. Differential expression of drug resistance genes and chemosensitivity in glial cell lineages correlate with differential response of oligodendrogliomas and astrocytomas to chemotherapy. Cancer Res. 2000;60:4812–4818.

    PubMed  CAS  Google Scholar 

  84. Mignone RG, Weber ET. Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Res. 2006;1111:26–29.

    Article  PubMed  CAS  Google Scholar 

  85. Seigers R, Schagen SB, Beerling W, et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res. 2008;186:168–175.

    Article  PubMed  CAS  Google Scholar 

  86. Winocur G, Vardy J, Binns MA, Kerr L, Tannock I. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav. 2006;85:66–75.

    Article  PubMed  CAS  Google Scholar 

  87. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–3478.

    Article  PubMed  CAS  Google Scholar 

  88. Muramatsu T, Johnson DR, Finch RA, et al. Age-related differences in vincristine toxicity and biodistribution in wild-type and transporter-deficient mice. Oncol Res. 2004;14:331–343.

    PubMed  CAS  Google Scholar 

  89. Jamroziak K, Balcerczak E, Cebula B, et al. Multi-drug transporter MDR1 gene polymorphism and prognosis in adult acute lymphoblastic leukemia. Pharmacol Rep. 2005;57:882–888.

    PubMed  CAS  Google Scholar 

  90. Linnebank M, Pels H, Kleczar N, et al. MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology. 2005;64:912–913.

    Article  PubMed  CAS  Google Scholar 

  91. Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don't divide what's to repair? Mutat Res. 2007;614:24–36.

    Article  PubMed  CAS  Google Scholar 

  92. Kaya E, Keskin L, Aydogdu I, Kuku I, Bayraktar N, Erkut MA. Oxidant/antioxidant parameters and their relationship with chemotherapy in Hodgkin's lymphoma. J Int Med Res. 2005;33:687–692.

    PubMed  CAS  Google Scholar 

  93. Papageorgiou M, Stiakaki E, Dimitriou H, et al. Cancer chemotherapy reduces plasma total antioxidant capacity in children with malignancies. Leuk Res. 2005;29:11–16.

    Article  PubMed  CAS  Google Scholar 

  94. Kennedy DD, Ladas EJ, Rheingold SR, Blumberg J, Kelly KM. Antioxidant status decreases in children with acute lymphoblastic leukemia during the first six months of chemotherapy treatment. Pediatr Blood Cancer. 2005;44:378–385.

    Article  PubMed  Google Scholar 

  95. Weijl NI, Hopman GD, Wipkink-Bakker A, et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol. 1998;9:1331–1337.

    Article  PubMed  CAS  Google Scholar 

  96. Conklin KA. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer. 2000;37:1–18.

    Article  PubMed  CAS  Google Scholar 

  97. Gietema JA, Meinardi MT, Messerschmidt J, et al. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet. 2000;355:1075–1076.

    Article  PubMed  CAS  Google Scholar 

  98. Smith J, Ladi E, Mayer-Proschel M, Noble M. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA. 2000;97:10032–10037.

    Article  PubMed  CAS  Google Scholar 

  99. Schroder CP, Wisman GB, de Jong S, et al. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer. 2001;84:1348–1353.

    Article  PubMed  CAS  Google Scholar 

  100. Lahav M, Uziel O, Kestenbaum M, et al. Nonmyeloablative conditioning does not prevent telomere shortening after allogeneic stem cell transplantation. Transplantation 2005;80:969–976.

    Article  PubMed  Google Scholar 

  101. Cheng A, Shin-ya K, Wan R, et al. Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci. 2007;27:3722–3733.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dietrich MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dietrich, J., Kesari, S. (2009). Effect of Cancer Treatment on Neural Stem and Progenitor Cells. In: Goldman, S., Turner, C. (eds) Late Effects of Treatment for Brain Tumors. Cancer Treatment and Research, vol 150. Springer, Boston, MA. https://doi.org/10.1007/b109924_6

Download citation

  • DOI: https://doi.org/10.1007/b109924_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77102-1

  • Online ISBN: 978-0-387-77103-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics