Skip to main content

Morphological implications of the interphase bridging crystalline and amorphousregions in semi-crystalline polymers

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 180))

Abstract

In semi-crystalline polymers a range of morphologies can be obtained in which a chainmay traverse the amorphous region between the crystals or fold back into the crystals leading to adjacentor nonadjacent reentry, depending on the molecular architecture and crystallization conditions. Thiscauses topological variations on the crystal surface and the occurrence of an interphase between thecrystalline and amorphous domains, thus affecting the mechanical properties. In this chapter, wewill discuss how the morphology within the interphase plays a prominent role in drawability,lamellar thickening and melting of thus crystallized samples. Normally, for linear polymers it isanticipated that extended chain crystals are thermodynamically most favorable, and ultimately, takingthe example of linear polyethylene, it has been shown that such chains would form extended chain crystals.However, this condition will not be realized in a range of polymers upon crystallization fromthe melt, such as those which do not show lamellar thickening or in branched polymers where the sidebranches cannot be incorporated within the crystal and hence fully extended chains are not possible.From a series of experiments, it is shown that with sufficient time and chain mobility, althoughextended chain crystals are not achievable, the chains still disentangle and a thermodynamicallystable morphology is formed with a disentangled crystallizable interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2D:

two dimensional

DSC:

differential scanning calorimetry

ESLD:

ethylene sequence length distribution

CRF:

crystalline rigid fraction

F2:

once-folded

FWHM:

full width at half maximum

IR:

infrared

LAM:

Raman longitudinal acoustic modes

LLDPE:

linear low-density polyethylene

MAF:

mobile amorphous fraction

Mw:

molecular weight

NIF:

non-integer fold

nm:

nanometer

NMR:

nuclear magnetic resonance

PET:

poly(ethylene terephthalate)

PEN:

poly(ethylene naphthalate)

PBT:

poly(butylene terephthalate)

Q 0 :

equilibrium triple point

RAF:

rigid amorphous fraction

SAXS:

small-angle X-ray scattering

T c :

crystallization temperature

T g :

glass transition temperature

T m :

melting temperature

UHMW-PE:

ultrahigh molecular weight polyethylene

WAXD:

wide-angle X-ray diffraction

References

  1. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  2. Mandelkern L (1983) An Introduction to Macromolecules. Springer-Verlag, New York

    Book  Google Scholar 

  3. Mandelkern L (1983) Crystallization in Polymers. McGraw-Hill, New York

    Google Scholar 

  4. Mandelkern L (1992) Chemtracts (Macromol Chem) 3:347

    CAS  Google Scholar 

  5. Baker AME, Windle AH (2002) Polymer 42:667

    Article  Google Scholar 

  6. Gautam S, Balijepalli S, Rutledge GC (2000) Macromolecules 33:9136

    Article  CAS  Google Scholar 

  7. Bassett DC, Hodge AM (1981) Proc R Soc London A377:25; ibid (1981) A377:39; ibid (1981) A377:61

    Article  CAS  Google Scholar 

  8. Khoury F (1979) Faraday Discuss Chem Soc 68:404

    Google Scholar 

  9. Frank FC (1979) Faraday Discuss Chem Soc 68:7

    Article  Google Scholar 

  10. Yoon DY, Flory PJ (1984) Macromolecules 17:868; ibid (1984) 17:862

    Article  CAS  Google Scholar 

  11. Kumar SK, Yoon DY (1989) Macromolecules 22:3458

    Article  CAS  Google Scholar 

  12. Mandelkern L (1990) Acc Chem Res 23:380

    Article  CAS  Google Scholar 

  13. Bassett DC, Hodge AM (1981) Proc R Soc London A377:25

    Article  CAS  Google Scholar 

  14. Keith HD, Padden FJ (1996) Macromolecules 24:7776

    Article  Google Scholar 

  15. Toda A, Okamura M, Hikosaka M, Nakagawa Y (2000) Polymer 44:6135

    Article  Google Scholar 

  16. Balijepalli S, Rutledge GC (1998) J Chem Phys 109:6523

    Article  CAS  Google Scholar 

  17. Smith P, Lemstra PJ, Booij HC (1982) J Polym Sci B Polym Phys 20:2229

    Article  CAS  Google Scholar 

  18. Lemstra PJ, Bastiaansen CWM, Rastogi S (2000) In: Salem DR (ed) Structure formation in polymeric fibers. Hanser, München, p. 185

    Google Scholar 

  19. Ward IM (1988) Developments in oriented polymers, 2nd ed. Elsevier, New York

    Google Scholar 

  20. Bassett DC (1976) Polymer 17:460

    Article  CAS  Google Scholar 

  21. Wunderlich B, Grebowicz J (1984) Adv Polym Sci 60=61:1

    Article  Google Scholar 

  22. Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci Phys Ed B31:87

    Article  CAS  Google Scholar 

  23. Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Macromolecules 24:6384

    Article  CAS  Google Scholar 

  24. Hikosaka M, Tsujima K, Rastogi S, Keller A (1992) Polymer 33:2502

    Article  CAS  Google Scholar 

  25. Maxwell AS, Unwin AP, Ward IM (1996) Polymer 37:3293

    Article  CAS  Google Scholar 

  26. Smith P, Chanzy HD, Rotzinger BP (1985) Polym Comm 26:258

    Article  CAS  Google Scholar 

  27. Rastogi S, Kurelec L, Lemstra PJ (1998) Macromolecules 22:5022

    Article  Google Scholar 

  28. Rastogi S, Kurelec L, Lippits D, Cuijpers J, Wimmer M, Lemstra PJ (2005) Biomacromolecules 6:942

    Article  CAS  Google Scholar 

  29. Ostwald W (1897) Z Physik Chem 22:286

    Google Scholar 

  30. Uehara H, Yamanobe T, Komoto T (2000) Macromolecules 33:4861

    Article  CAS  Google Scholar 

  31. Rastogi S, Spoelstra AB, Goossens JGP, Lemstra PJ (1997) Macromolecules 30:7880

    Article  CAS  Google Scholar 

  32. Xue YQ, Tervoort TA, Rastogi S, Lemstra PJ (2000) Macromolecules 33:7084

    Article  CAS  Google Scholar 

  33. Ungar G, Zeng X (2001) Chem Rev 101:4157

    Article  CAS  Google Scholar 

  34. Terry AE, Phillips TL, Hobbs JK (2003) Macromolecules 36:3240

    Article  CAS  Google Scholar 

  35. Schmidt-Rohr K, Spiess HW (1994) in: Multidimensional Solid-State NMR and Polymers. Academic, London, p. 478

    Google Scholar 

  36. Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635

    Article  Google Scholar 

  37. Wunderlich B (1980) Macromolecular Physics, Vol. 3: Crystal Melting. Academic, New York

    Google Scholar 

  38. Kortleve G, Tuijnman CA, Vonk CG (1972) J Polym Sci B Polym Phys 10:123

    Article  CAS  Google Scholar 

  39. Hosoda S, Nomura H, Gotoh Y, Kihara H (1990) Polymer 31:1999

    Article  CAS  Google Scholar 

  40. Vonk CG, Reynaers H (1990) Polymer Commun 31:190

    CAS  Google Scholar 

  41. Zachmann HG (1967) Kolloid-Z u Z Polymere 216–217:180

    Article  Google Scholar 

  42. Vonk CG (1986) J Polym Sci Polym Lett 24:305

    CAS  Google Scholar 

  43. Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386

    Article  CAS  Google Scholar 

  44. Ungar G, Keller A (1986) Polymer 27:1835

    Article  CAS  Google Scholar 

  45. Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517

    Article  CAS  Google Scholar 

  46. Zeng X, Ungar G (1998) Polymer 39:4523

    Article  CAS  Google Scholar 

  47. Ungar G, Zeng X, Brooke GM, Mohammed S (1998) Macromolecules 31:1875

    Article  CAS  Google Scholar 

  48. Zeng X, Ungar G (1999) Macromolecules 32:3543

    Article  Google Scholar 

  49. Spells SJ, Zeng X, Ungar G (2000) Polymer 41:8775

    Article  Google Scholar 

  50. Hikosaka M, Seto T (1982) Jpn J Appl Phys 21:L332

    Article  Google Scholar 

  51. Rastogi A, Hobbs JK, Rastogi S (2002) Macromolecules 35:5861

    Article  CAS  Google Scholar 

  52. Hay IL, Keller A (1970) J Polym Sci C 30:289

    Google Scholar 

  53. Vanden Eynde S, Mathot VBF, Hoehne GWH, Schawe JWK, Reynaers H (2000) Polymer 41:3411

    Article  Google Scholar 

  54. Rastogi A (2002) PhD Thesis, Eindhoven University of Technology; Rastogi A, Terry AE, Mathot VBF, Rastogi S (2005) Macromolecules 38:4744

    Google Scholar 

  55. Rastogi S, Newman M, Keller A (1991) Nature 353:55

    Article  CAS  Google Scholar 

  56. Rastogi S, Newman M, Keller A (1993) J Polym Sci B Polym Phys 31:125

    Article  CAS  Google Scholar 

  57. Rastogi S, Hoehne GWH, Keller A (1999) Macromolecules 32:8897

    Article  CAS  Google Scholar 

  58. It is to be noted that the reflection assigned to the “new phase” in butyl branched alkanes is relatively weak compared to the reflections observed for the “new phase” in ethylene-1-octene copolymer (5.2 mol %). As explained in this chapter, we attribute the “new phase” to the crystallization of transient layer (butyl branches and fold surface). Considering the anticipated tight folds for butyl branched alkanes, the amount of crystallizable entities in the branched alkanes would be much less than in the ethylene-1-octene copolymers where the loose folds are expected. We would like to mention that, considering the d-value and intensity of the pseudo-hexagonal phase in branched alkanes, this reflection may be referred to as open-orthorhombic phase.

    Google Scholar 

  59. Gupta VB (2002) J Appl Polym Sci 83:586

    Article  CAS  Google Scholar 

  60. Suzuki H, Grebowicz J, Wunderlich B (1985) Makromol Chem 186:1109

    Article  CAS  Google Scholar 

  61. Huo P, Cebe P (1992) Macromolecules 25:902

    Article  CAS  Google Scholar 

  62. Gabriels W, Gaur HA, Feyen FC, Veeman WS (1994) Macromolecules 27:5811

    Article  Google Scholar 

  63. Cole KC, Aiji A, Pellerin E (2002) Macromolecules 32:770

    Article  Google Scholar 

  64. Schick C, Dobbertin J, Potter M, Dehne H, Hensel A, Wurm A, Ghoneim AN, Weyer S (1997) Therm Anal 49:499

    Article  CAS  Google Scholar 

  65. Schick C, Wurm A, Mohamed A (2001) Colloid Polym Sci 279:800

    Article  CAS  Google Scholar 

  66. Lin J, Shenogin S, Nazarenko S (2002) Polymer 43:4733

    Article  CAS  Google Scholar 

  67. Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) J Polym Sci B Polym Phys 42:2092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Rastogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rastogi, S., Terry, A.E. (2005 ). Morphological implications of the interphase bridging crystalline and amorphousregions in semi-crystalline polymers. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization I. Advances in Polymer Science(), vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107237

Download citation

Publish with us

Policies and ethics