Skip to main content

The Effect of Self-Poisoning on Crystal Morphology and Growth Rates

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 180))

Abstract

Recent extensive experimental work and the limited theoretical studies of the phenomenon ofself-poisoning of the crystal growth face are reviewed. The effect arises from incorrect but nearlystable stem attachments which obstruct productive growth. Experimental data on the temperature andconcentration dependence of growth rates and the morphology of long-chain monodisperse n-alkanesfrom C162H326 to C390H782are surveyed and compared to some previously established data on poly(ethylene oxide) fractions, aswell as on polyethylene. The anomalous growth rate minima in both temperature and concentration dependenceof growth rates are accompanied by profound changes in crystal habits, which have been analysed interms of growth rates on different crystallographic faces, and in terms of separate rates of stepnucleation and propagation. In some cases non-nucleated rough-surface growth is approached. Thephenomena covered include “poisoning” minima induced by guest species, the “dilutionwave” effect, autocatalytic crystallization, pre-ordering in solution, two-dimensional nucleation,and the kinetic roughening and tilt of basal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

Stem attachment rate

a 0,b 0 :

Unit cell parameters

AFM:

Atomic force microscopy

B :

Stem detachment rate

b :

Width of a molecular chain

E:

Extended chain form (= F1)

F2, F3, …, F m :

“Integer forms” with chains folded in two, three etc.

ΔF :

Overall free energy of crystallization

ϕ:

Chain tilt angle with respect to layer normal

φ:

Obtuse angle between (110) and (−110) planes in alkane and polyethylene crystals.φ/2 = tan−1(a 0/b 0)

Δϕ:

Bulk free energy of crystallization

G :

Crystal growth rate

Δh f :

Heat of fusion

i :

Rate of initiation (secondary nucleation) of a new row of stems on crystal growthface

IF:

Integer folded

K :

Slope of the linear dependence of G on ΔT

L :

Chain length

l :

Length of straight-chain segment traversing the crystal (stem length)

l SAXS :

SAXS long period

LH theory:

The theory of Lauritzen and Hoffman

m = L/l :

Number of folds per chain +1

M n :

Number average molecular mass

n :

Number of monomer repeat units per chain (e.g., number of carbons in an alkane); alsoreaction order

NIF:

Non-integer folded form

PE:

Polyethylene

PEO:

Poly(ethylene oxide)

q :

Modulus of the wavevector, q = 4π(sin θ)/λ,where θ is half the scattering angle and λ is radiation wavelength

SANS:

Small-angle neutron scattering

SAXS:

Small-angle X-ray scattering

σ:

Side-surface free energy

σe :

End- or fold-surface free energy

T c :

Crystallization temperature

T Fx-Fy c :

Growth transition temperature between two successive folded forms (e.g., T E-F2 c is the temperature of transition between extended (E) and once-folded (F2)chain growth)

T d :

Dissolution temperature

T m :

Melting temperature

T R :

Roughening transition temperature

ΔT :

T mT c or T dT c = supercooling

v :

Rate of step propagation on a crystal growth face (often also referred to as g)

References

  1. Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635

    Article  Google Scholar 

  2. Lee KS, Wegner G (1985) Makromol Chem Rapid Commun 6:203

    CAS  Google Scholar 

  3. Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635

    Article  Google Scholar 

  4. Brooke GM, Mohammed S, Whiting MC (1999) Polymer 49:773

    Article  Google Scholar 

  5. Atkins EDT, Hill MJ, Jones NA, Sikorski P (2000) J Mater Sci 35:5179

    Article  CAS  Google Scholar 

  6. Organ SJ, private communication

    Google Scholar 

  7. Ungar G, Zeng XB (2001) Chem Rev 101:4157

    Article  CAS  Google Scholar 

  8. For a review of polymer crystallization theory see: Armitstead K, Golbeck-Wood G (1992) Adv Polym Sci 100:219

    Google Scholar 

  9. Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386

    Article  CAS  Google Scholar 

  10. Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Macromolecules 36:5637

    Article  CAS  Google Scholar 

  11. Ungar G, Keller A (1986) Polymer 27:1835

    Article  CAS  Google Scholar 

  12. Ungar G, Zeng XB, Brooke GM, Mohammed S (1998) Macromolecules 31:1875

    Article  CAS  Google Scholar 

  13. Zeng XB, Ungar G, Spells SJ (2000) Polymer 41:8775

    Article  Google Scholar 

  14. Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508

    Article  CAS  Google Scholar 

  15. Zeng XB, Ungar G, Spells SJ, King S (2004) Real-time SANS study of transient phases in polymer crystallization. Highlights of ISIS Science, Ann Rep Rutherford-Appleton Lab (in press)

    Google Scholar 

  16. Hoffman JD, Davis GT, Lauritzen JI Jr (1976) In: Hannay NB (ed) Treatise on solid-state chemistry, vol 3. Plenum, New York, pp 497~614

    Chapter  Google Scholar 

  17. Hoffman JD (1997) Polymer 38:3151

    Article  CAS  Google Scholar 

  18. Kovacs AJ, Gonthier A, Straupe C (1975) J Polym Sci Polym Symp 50:283

    CAS  Google Scholar 

  19. Hoffman JD (1986) Macromolecules 19:1124

    Article  CAS  Google Scholar 

  20. Hoffman JD (1985) Macromolecules 18:772

    Article  CAS  Google Scholar 

  21. Sadler DM (1985) J Polym Sci Polym Phys 23:1533

    Article  CAS  Google Scholar 

  22. Sadler DM (1983) Polymer 24:1401

    Article  CAS  Google Scholar 

  23. Point JJ, Kovacs A (1980) Macromolecules 13:399

    Article  CAS  Google Scholar 

  24. Toda A (1986) J Phys Soc Jpn 55:3419

    CAS  Google Scholar 

  25. Ungar G (1993) In: Dosiere M (ed) Polymer crystallization. NATO ASI Series. Kluwer, Dordrecht, pp 63~72

    Google Scholar 

  26. Ungar G, Keller A (1987) Polymer 28:1899

    Article  CAS  Google Scholar 

  27. Organ SJ, Ungar G, Keller A (1989) Macromolecules 22:1995

    Article  CAS  Google Scholar 

  28. Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517

    Article  CAS  Google Scholar 

  29. Putra EGR, Ungar G (2003) Macromolecules 36:5214

    Article  CAS  Google Scholar 

  30. de Silva DSM, Ungar G, in preparation

    Google Scholar 

  31. de Silva DSM, Zeng XB, Ungar G, in preparation

    Google Scholar 

  32. Organ SJ, Keller A (1985) J Mater Sci 20:1571

    Article  CAS  Google Scholar 

  33. Toda A (1991) Polymer 32:771

    Article  CAS  Google Scholar 

  34. Boda E, Ungar G, Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1997) Macromolecules 30:4674

    Article  CAS  Google Scholar 

  35. Organ SJ, Barham PJ, Hill MJ, Keller A, Morgan RL (1997) J Polym Sci Polym Phys 35:775

    Article  Google Scholar 

  36. Sutton SJ, Vaughan AS, Bassett DC (1996) Polymer 37:5735

    Article  CAS  Google Scholar 

  37. Hobbs JK, Hill MJ, Barham PJ (2001) Polymer 42:2167

    Article  CAS  Google Scholar 

  38. Morgan RL, Barham PJ, Hill MJ, Keller A, Organ SJ (1998) J Macromol Sci Phys B 37:319

    Article  Google Scholar 

  39. Putra EGR, Ungar G (2003) Macromolecules 36:3812

    Article  CAS  Google Scholar 

  40. Cheng SZD, Chen JH (1991) J Polym Sci Polym Phys 29:311

    Article  CAS  Google Scholar 

  41. Hosier IL, Bassett DC, Vaughan AS (2000) Macromolecules 33:8781

    Article  CAS  Google Scholar 

  42. Zeng XB, Ungar G (2001) Macromolecules 34:6945

    Article  CAS  Google Scholar 

  43. Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508

    Article  CAS  Google Scholar 

  44. Ungar G, Mandal P, Higgs PG, de Silva DSM, Boda E, Chen CM (2000) Phys Rev Lett 85:4397

    Article  CAS  Google Scholar 

  45. Putra EGR, Ungar G, in preparation

    Google Scholar 

  46. Higgs PG, Ungar G (2001) J Chem Phys 114:6958

    Article  CAS  Google Scholar 

  47. Fisher RA (1937) Ann Eugen 7:355

    Article  Google Scholar 

  48. Sadler DM, Gilmer GH (1987) Polym Commun 28:243

    Article  Google Scholar 

  49. Higgs PG, Ungar G (1994) J Chem Phys 100:640

    Article  CAS  Google Scholar 

  50. Keith HD (1964) J Appl Phys 35:3115

    Article  CAS  Google Scholar 

  51. Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25

    Article  CAS  Google Scholar 

  52. Ungar G, Putra EGR (2001) Macromolecules 34:5180

    Article  CAS  Google Scholar 

  53. Waddon AJ, Ungar G, in preparation

    Google Scholar 

  54. Khoury F (1979) Faraday Discuss Chem Soc 68:404

    Google Scholar 

  55. Mansfield ML (1988) Polymer 29:1755

    Article  CAS  Google Scholar 

  56. Point JJ, Villers D (1991) J Cryst Growth 114:228

    Article  CAS  Google Scholar 

  57. Frank FC (1974) J Cryst Growth 22:233

    Article  CAS  Google Scholar 

  58. Hoffman JD, Miller RL (1989) Macromolecules 22:3038, 3502; Hoffman JD, Miller RL (1991) Polymer 32:963

    Article  CAS  Google Scholar 

  59. Toda A (1993) Faraday Discuss 95:129

    Article  CAS  Google Scholar 

  60. Shcherbina M, Ungar G, in preparation

    Google Scholar 

  61. Toda A (2003) J Chem Phys 118:8446

    Article  CAS  Google Scholar 

  62. Sadler DM, Gilmer GH (1988) Phys Rev B 38:5684

    Article  Google Scholar 

  63. Buckley CP, Kovacs AJ (1984) In: Hall IH (ed) Structure of crystalline polymers. Elsevier, London, pp 261~307

    Google Scholar 

  64. Kovacs AJ, Gonthier A (1972) Kolloid Z Z Polym 250:530

    Article  CAS  Google Scholar 

  65. Briber RM, Khoury F (1993) J Polym Sci Polym Phys 31:1253

    Article  CAS  Google Scholar 

  66. Toda A, Arita T, Hikosaka M (2001) Polymer 42:2223

    Article  CAS  Google Scholar 

  67. Pechhold W (1967) Kolloid Z Z Polym 216:235

    Article  Google Scholar 

  68. Heck B, Strobl G, Grasruck M (2003) Eur Phys J E 11:117

    Article  CAS  Google Scholar 

  69. Putra EGR, Ungar G, submitted

    Google Scholar 

  70. Point JJ (1979) Faraday Discuss Chem Soc 68:167

    Article  Google Scholar 

  71. Doye JPK, Frenkel D (1998) J Chem Phys 109:10033

    Article  CAS  Google Scholar 

  72. Hikosaka M (1987) Polymer 28:1257; Polymer (1990) 31:458

    Article  CAS  Google Scholar 

  73. Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302

    Article  CAS  Google Scholar 

  74. Frank FC, Tosi M (1961) Proc R Soc Lond A 263:323

    Article  CAS  Google Scholar 

  75. Sadler DM, Gilmer GH (1984) Polymer 24:1446

    Article  Google Scholar 

  76. Okuda K, Yoshida T, Sugita M, Asahina M (1967) J Polym Sci A-2 5:465

    CAS  Google Scholar 

  77. Bassett DC, Frank FC, Keller A (1963) Phil Mag 8:1753

    Article  CAS  Google Scholar 

  78. Khoury F (1979) Faraday Discuss Chem Soc 68:404

    Google Scholar 

  79. Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25

    Article  CAS  Google Scholar 

  80. Guttman CM, DiMarzio EA, Hoffman JD (1981) Polymer 22:1466

    Article  CAS  Google Scholar 

  81. Smith AE (1953) J Chem Phys 21:2229

    Article  CAS  Google Scholar 

  82. Shearer HMM, Vand V (1956) Acta Crystallogr 9:379

    Article  CAS  Google Scholar 

  83. Piesczek W, Strobl GR, Malzahn K (1974) Acta Crystallogr B 30:1278

    Article  CAS  Google Scholar 

  84. de Silva DSM, Zeng XB, Ungar G, Spells SJ (2002) Macromolecules 35:7730

    Article  Google Scholar 

  85. Brooke GM, Farren C, Harden A, Whiting MC (2001) Polymer 42:2777

    Article  CAS  Google Scholar 

  86. de Silva DSM, Zeng XB, Ungar G, Spells SJ (2003) J Macromol Sci Phys 42:915

    Article  Google Scholar 

  87. Abo el Maaty MI, Bassett DC (2001) Polymer 42:4957

    Article  CAS  Google Scholar 

  88. Blundell DJ, Liggat JJ, Flory A (1992) Polymer 33:2475

    Article  CAS  Google Scholar 

  89. Ten Hove CF, De Meersman B, Penelle J, Jonas AM (2004) Proc IUPAC Macro 2004, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ungar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ungar, G., Putra, E.G.R., de Silva, D.S.M., Shcherbina, M.A., Waddon, A.J. (2005 ). The Effect of Self-Poisoning on Crystal Morphology and Growth Rates. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization I. Advances in Polymer Science(), vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107232

Download citation

Publish with us

Policies and ethics