Skip to main content

Analysis and Observation of Polymer Crystal Structures at the IndividualStem Level

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 180))

Abstract

Several theories or schemes of polymer crystallization that differ from classical nucleationand growth processes have been put forth recently. They assume some form of structure developmentin the polymer melt prior to crystallization. This ordering assists crystallization or initiatesthe build-up of crystal precursors that ultimately form the full-grown crystal by accretion and reorganization.These schemes are evaluated by analysis of the resulting crystal structure (by adopting a strictlystructural standpoint). More precisely, the outcomes of selection processes that take place duringcrystallization of syndiotactic and isotactic chiral but racemic polyolefins are visualized. Bothtypes of polymers can form right-handed or left-handed helical stems in a crystal lattice (inother words there is a conformational choice), but the hand of each helical stem must obey thecrystallographic symmetry rules corresponding to the phase (either chiral or antichiral) that is produced.Direct observation of the helical hand of stems building up a single layer and embedded in theircrystallographic environment is not normally achievable. It can however be approached using a combinationof epitaxial crystallization on a foreign substrate and Atomic Force Microscopy (AFM). Indeed,selective dissolution of the substrate makes it possible to reach the first layer deposited on thatsubstrate and image it (for example by Atomic Force Microscopy). The stems that build up isochirallayers can be shown to have a common helical hand. In one favorable case (the fully antichiralcrystal form I of syndiotactic polypropylene), the hand of individualstems has been determined. These observations and analyses indicate that the helical hand of stemsis highly dependent on the substrate or growth face topography; in other words they indicate thatthe depositing stem probes and adapts to the surface structure prior to successful attachment. Theseobservations strongly support a crystallization process controlled by the growth front ratherthan by earlier events that may take place in the polymer melt. In a different approach, useof polyolefins that bear a chiral side-chain and adopt preferred helical conformations in solutionand in the melt has been suggested as a way to investigate the relationship (if any) betweenthe helical hand in the melt and that of the resulting crystal structures. On cooling from the melt,they form liquid crystalline phases that later convert to the final crystal structure. In one documentedcase at least, the final crystal structure is antichiral, whereas the liquid crystalline structureis chiral. These systems, although highly specific and possibly not representative of more commonpolymers, provide an opportunity to investigate molecular processes that may take place if some typeof preordering takes place in the polymer melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. RSC (eds) (1979) Faraday Discuss 68

    Google Scholar 

  2. Wittmann JC, Lotz B (1985) J Polym Sci Pol Phys 23:205

    Article  CAS  Google Scholar 

  3. Pearce R, Vancso GJ (1998) Polymer 39:6743

    Article  CAS  Google Scholar 

  4. Olmsted PD, Poon WCK, McLeish TCB, Terrill TCB, Ryan A (1998) Phys Rev Lett 81:373

    Article  CAS  Google Scholar 

  5. Terrill NJ, Fairclough PA, Towns-Andrews E, Komansheck BU, Young RJ, Ryan AJ (1998) Polymer 39:2381

    Article  CAS  Google Scholar 

  6. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4457

    Article  CAS  Google Scholar 

  7. Strobl G (2000) Eur Phys J E 3:165

    Article  CAS  Google Scholar 

  8. Lotz B (2000) Eur Phys J E 3:185

    Article  CAS  Google Scholar 

  9. Cheng SZD, Chen JH, Zhang AQ, Barley JS, Habenschuss A, Zschack PR (1992) Polymer 33:1140. See also the contribution by Ungar G, et al. in this issue

    Article  CAS  Google Scholar 

  10. Lotz B, Wittmann JC (1986) J Polym Sci Pol Phys 24:1541

    Article  CAS  Google Scholar 

  11. Cheng SZD, Li CY, Zhu L (2000) Eur Phys J E 3:195

    Article  CAS  Google Scholar 

  12. Muthukumar M (2000) Eur Phys J E 3:199

    Article  CAS  Google Scholar 

  13. Pino P (1965) Adv Polym Sci 4:393

    CAS  Google Scholar 

  14. Green MM, Park JW, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) Angew Chem Int Edit 38:3138

    Article  Google Scholar 

  15. Hoffman JD, Davis GT, Lauritzen JI (1976) Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, New York, Ch 7

    Google Scholar 

  16. Sadler DM, Spells SJ, Keller A, Guenet JM (1984) Polym Commun 25:290

    CAS  Google Scholar 

  17. Cheam TC, Krimm S (1981) J Polym Sci Pol Phys 19:423

    Article  CAS  Google Scholar 

  18. Wittmann JC, Lotz B (1990) Prog Polym Sci 15:909

    Article  CAS  Google Scholar 

  19. Wittmann JC, Lotz B (1989) Polymer 30:27

    Article  CAS  Google Scholar 

  20. Yan S, Katzenberg F, Petermann J, Yang D, Shen Y, Straupé C, Wittmann JC, Lotz B (2000) Polymer 41:2613

    Article  CAS  Google Scholar 

  21. Mathieu C, Thierry A, Wittmann JC, Lotz B, (2000) Polymer 41:7241

    Article  CAS  Google Scholar 

  22. Mathieu C, Thierry A, Wittmann JC, Lotz B (2002) J Polym Sci Pol Phys 40:2504

    Article  CAS  Google Scholar 

  23. Kopp S, Wittmann JC, Lotz B (1994) Polymer 35:916

    Article  CAS  Google Scholar 

  24. Kopp S, Wittmann JC, Lotz B (1994) Polymer 35:908

    Article  CAS  Google Scholar 

  25. Natta G, Corradini P, Bassi IW (1960) Nuovo Cimento Suppl 15(1):52

    Article  CAS  Google Scholar 

  26. Mathieu C, Stocker W, Thierry A, Wittmann JC, Lotz B (2001) Polymer 42:7033

    Article  CAS  Google Scholar 

  27. Lotz B, Ruiz de Ballesteros O, Auriemma F, De Rosa C, Lovinger AJ (1998) Macromolecules 31:9253

    Article  CAS  Google Scholar 

  28. Rastogi S, Loos J, Cheng SZD, Lemstra P (1999) Abstracts. 218th ACS Meeting PMSE 218:153

    Google Scholar 

  29. Rastogi S, La Camera D, van der Burght F, Terry AE, Cheng SZD (2001) Macromolecules 34:7730

    Article  CAS  Google Scholar 

  30. Lotz B, Lovinger AJ, Cais RE (1988) Macromolecules 21:2375

    Article  CAS  Google Scholar 

  31. Lovinger AJ, Lotz B, Davis DD, Padden FJ Jr (1993) Macromolecules 26:3494

    Article  CAS  Google Scholar 

  32. Zhang J, Yang D, Thierry A, Wittmann JC, Lotz B (2001) Macromolecules 34:6261

    Article  CAS  Google Scholar 

  33. Stocker W, Schumacher M, Graff S, Lang J, Wittmann JC, Lovinger AJ, Lotz B (1994) Macromolecules 27:6948

    Article  CAS  Google Scholar 

  34. Brückner S, Allegra G, Corradini P (2002) Macromolecules 35:3928

    Article  Google Scholar 

  35. Wilkes GE, Lehr MH (1973) J Macromol Sci Phys B7:225

    Article  Google Scholar 

  36. Kim MH, Londono JD, Habenschuss A (2000) J Polym Sci Pol Phys 38:2480

    Article  CAS  Google Scholar 

  37. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Polymer 39:6331

    Article  CAS  Google Scholar 

  38. Neuenschwander P, Pino P (1983) Eur Polym J 19:1075

    Article  CAS  Google Scholar 

  39. Corradini P, Martuscelli E, Montagnoli G, Petraccone V (1970) Eur Polym J 6:1201

    Article  CAS  Google Scholar 

  40. Buono A, Talarico G, De Rosa C, Thierry A, Lotz B (to be published)

    Google Scholar 

  41. Bassi IW, Bonsignori O, Lorenzi GP, Pino P, Corradini P, Temussi PA (1971) J Polym Sci A2 9:193

    Article  CAS  Google Scholar 

  42. Benedetti E, Bonsignori O, Chiellini E, Pino P (1978) Journées de Calorimétrie et d’Analyse Thermique (JCAPDR) 9A B9:65

    Google Scholar 

  43. Bonsignori O, Pino P, Manzani G, Crescenzi V (1975) Makromol Chem Suppl 1:317

    Article  Google Scholar 

  44. Buono A, Ruan J, Thierry A, Lotz B, Neuenschwander P (to be published). See also Buono A, Ruan J, Thierry A, Neuenschwander P, Lotz B (2005) Chin J Polym Sci 23:171

    Google Scholar 

  45. DiCorleto JA, Bassett DC (1990) Polymer 31:1971

    Article  CAS  Google Scholar 

  46. Pino P, Ciardelli F, Lorenzi GP, Montagnoli G (1963) Makromol Chem 61:207

    Article  CAS  Google Scholar 

  47. Carlini C, Ciardelli F, Pino P (1968) Makromol Chem 119:244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lotz, B. (2005 ). Analysis and Observation of Polymer Crystal Structures at the IndividualStem Level. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization I. Advances in Polymer Science(), vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107231

Download citation

Publish with us

Policies and ethics