Skip to main content

Dendritic Gelators

  • Chapter
  • First Online:
Low Molecular Mass Gelator

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 256))

Abstract

Dendritic molecules fall somewhere between small-molecule organic systems and polymers. Like polymers, they are constructed from a repeating motif, often have nanoscopic dimensions, and are capable of forming multiple non-covalent interactions. However, they are synthesized using organic chemistry methods and, unlike polymers, have well-defined, discrete structures which can be precisely controlled. This combination of properties makes dendritic molecules of particular interest for application in the assembly of gel-phase materials. In particular, this review focusses on the way in which molecular-scale information, put into place using organic synthesis, is transcribed up to the nanoscale, as visualised by electron microscopy techniques. Furthermore, it is illustrated that the molecular and nanoscale structures have a direct impact on the macroscopic materials properties of the gel-phase network. We discuss the structural effects on macroscopic gelation in terms of molecular size, shape and chirality, and clearly outline the specific advantages of using dendritic structures for this type of soft materials application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graham T (1861) Phil Trans Roy Soc 151:183–224

    Article  Google Scholar 

  2. (a) Lloyd DJ (1926) In: Alexander J (ed) Colloid chemistry, vol 1. Chemical Catalog Company, New York, p 767. (b) Keller A (1995) Faraday Discuss 101:1–49

    Google Scholar 

  3. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 347–398

    Google Scholar 

  4. Corriu RJP, Leclercq D (1996) Angew Chem Int Ed Engl 35:1420–1436

    Article  Google Scholar 

  5. See for example: (a) Burch W, Ross Murphy SB (eds) (1988) Physical networks –-polymers and gels. Elsevier, London. (b) Guenet J-M (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London. For a general overview of self-organising polymer systems including gels in a broader context see: (c) Förster S, Konrad M (2003) J Mater Chem 13:2671–2688

    Google Scholar 

  6. Fages F (ed) (2005) Top Curr Chem, chapters in this volume

    Google Scholar 

  7. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4097

    Article  CAS  Google Scholar 

  8. (a) Whitesides GM, Grzybowski B (2002) Science 295:2418–2421. (b) Hamley IW (2003) Angew Chem Int Ed 42:1692–1712. (c) Elemans JAAW, Rowan AE, Nolte RJM (2003) J Mater Chem 13:2661–2670. (d) Schalley CA, Lützen A, Albrecht M (2004) Chem Eur J 10:1072–1080. (e) Lehn J-M (2002) Proc Natl Acad Sci USA 99:4763–4768

    Google Scholar 

  9. Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1217

    Article  CAS  Google Scholar 

  10. (a) Terech P, Weiss RG (1997) Chem Rev 97:3133–3159. (b) Gronwald O, Snip E, Shinkai S (2002) Curr Opin Colloid Interface Sci 7:148–156. (c) van Esch JH, Feringa BL (2000) Angew Chem Int Ed 39:2263–2266. (d) Oda R, Huc I, Candau SJ (1998) Angew Chem Int Ed 37:2689–2691. (e) Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237–1247. (f) Melendez RE, Carr AJ, Linton BR, Hamilton AD (2000) Struct Bond 96:31–61. (g) Shimizu T (2003) Polym J 25:1–22. (h) Pasini D, Kraft A (2004) Curr Opin Solid State Mater Sci 8:157–163

    Google Scholar 

  11. (a) Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons–-concepts, synthesis, applications. Wiley-VCH, Weinheim. (b) Fréchet JMJ, Tomalia DA (eds) (2002) Dendrimers and other dendritic polymers. Wiley, New York

    Google Scholar 

  12. (a) Smith DK, Hirst AR, Love CS, Hardy JG, Brignell SV, Huang B (2005) Prog Polym Sci 30:220–293. (b) Smith DK, Diederich F (2000) Top Curr Chem 210:183–227. (c) Zimmerman SC, Lawless LJ (2001) Top Curr Chem 217:95–120. (d) Fréchet JMJ (2002) Proc Natl Acad Sci USA 99:4782–4787. (e) Diederich F, Felber B (2002) Proc Natl Acad Sci USA 99:4778–4781. (f) Gittins PJ, Twyman LJ (2003) Supramol Chem 15:5–23

    Google Scholar 

  13. Lee RT, Lee YC (1994) In: Lee RT, Lee YC (eds) Neoglycoconjugates: preparation and applications. Academic, San Diego, p 23

    Google Scholar 

  14. See for example: (a) Roy R, Zanini D, Meunier SJ, Romanowska A (1993) J Chem Soc Chem Commun 1869–1872. (b) Zanini D, Roy R (1997) J Am Chem Soc 119:2088–2095

    Google Scholar 

  15. For an example in which dendritic branches play a steric buttressing role in controlling the self-assembly of a hexameric rosette-type aggregate see: (a) Zimmerman SC, Zeng F, Reichert DEC, Kolotuchin SV (1996) Science 271:1095–1098. (b) Zeng F, Zimmerman SC, Kolotuchin SV, Reichert DEC, Ma YG (2002) Tetrahedron 58:825–843

    Google Scholar 

  16. For reviews of dendrimer chemistry with a significant synthetic focus see: (a) Chow H-F, Mong TK-K, Nongrum MF, Wan C-W (1998) Tetrahedron 54:8543–8660. (b) Matthews OA, Shipway AN, Stoddart JF (1998) Prog Polym Sci 23:1–56

    Google Scholar 

  17. Smith DK, Diederich F (1998) Chem Eur J 4:1353–1361

    Article  CAS  Google Scholar 

  18. Pyun J, Zhou X-Z, Drockenmuller E, Hawker CJ (2003) J Mater Chem 13:2653–2660

    Article  CAS  Google Scholar 

  19. Buhleier E, Wehner W, Vögtle F (1978) Synthesis 155–158

    Google Scholar 

  20. (a) Denkewalter RG, Kolc JF, Lukasavage WJ (1979) US Patent 4,360,646. (b) Denkewalter RG, Kolc JF, Lukasavage WJ (1981) US Patent 4,289,872. (c) Denkewalter RG, Kolc JF, Lukasavage WJ (1983) US Patent 4,410,688

    Google Scholar 

  21. (a) Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132. (b) Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Macromolecules 19:2466–2468

    Google Scholar 

  22. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  23. (a) de Brabander-van den Berg EMM, Meijer EW (1993) Angew Chem Int Ed 32:1308–1311. (b) Meijer EW, Bosman HJM, van den Booren HAMJ, de Brabander-van den Berg EMM, Castelijns AMCF, De Man HCJ, Reintjens RWEC, Stoelwinder CJC, Nijenhuis AJ (1996) US Patent 5,610,268

    Google Scholar 

  24. Wörner C, Mülhaupt R (1993) Angew Chem Int Ed 32:1306–1308

    Article  Google Scholar 

  25. (a) Hawker C, Fréchet JMJ (1990) J Chem Soc Chem Commun 1010–1013. (b) Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638–7647

    Google Scholar 

  26. Miller TM, Neenan TX (1990) Chem Mater 2:346–349

    Article  CAS  Google Scholar 

  27. Moore JS, Xu Z (1991) Macromolecules 24:5893–5894

    Article  CAS  Google Scholar 

  28. Grayson SM, Fréchet JMJ (2001) Chem Rev 101:3819–3867

    Article  CAS  Google Scholar 

  29. (a) Wooley KL, Hawker CJ, Fréchet JMJ (1991) J Am Chem Soc 113:4252–4261. (b) Kawaguchi T, Walker KL, Wilkins CL, Moore JS (1995) J Am Chem Soc 117:2159–2165. (c) Mattei S, Wallimann P, Kenda B, Amrein W, Diederich F (1997) Helv Chim Acta 80:2391–2417

    Google Scholar 

  30. (a) Inoue K (2000) Prog Polym Sci 25:453–571. (b) Yates CR, Hayes W (2004) Eur Polym J 40:1257–1281

    Google Scholar 

  31. Sunder A, Hanselmann R, Frey H, Mülhaupt R (1999) Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  32. (a) Kim MK, Jeon YM, Jeon WS, Kim HJ, Hong SG, Park CG, Kim K (2001) Chem Commun 667–668. (b) Wang RY, Yang J, Zheng ZP, Carducci MD, Jiao J, Seraphin S (2001) Angew Chem Int Ed 40:549–552. (c) Gopidas KR, Whitesell JK, Fox MA (2003) J Am Chem Soc 125:6491–6502. (d) Love CS, Chechik V, Smith DK, Brennan C (2004) J Mater Chem 14:919–924. (e) Daniel M-C, Ruiz J, Nlate S, Blais J-C, Astruc D (2003) J Am Chem Soc 125:2617–2628. (f) Wang YA, Li JJ, Chen HY, Peng XG (2002) J Am Chem Soc 124:2293–2298

    Google Scholar 

  33. Kim Y, Mayer MF, Zimmerman SC (2003) Angew Chem Int Ed 42:1121–1126

    Article  CAS  Google Scholar 

  34. (a) van Hest JCM, Delnoye DAP, Baars MWPL, van Genderen MHP, Meijer EW (1995) Science 268:1592–1595. (b) van Hest JCM, Delnoye DAP, Baars MWPL, Elissen-Román C, van Genderen MHP, Meijer EW (1996) Chem Eur J 2:1616–1626

    Google Scholar 

  35. For reviews see: (a) Dennig J (2003) Top Curr Chem 228:227–236. (b) Stiriba SE, Frey H, Haag R (2002) Angew Chem Int Ed 41:1329–1334

    Google Scholar 

  36. For very selected references see: (a) Percec V, Chu PW, Ungar G, Zhou JP (1995) J Am Chem Soc 117:11441–11454. (b) Percec V, Cho W-D, Mosier PE, Ungar G, Yeardley DJP (1998) J Am Chem Soc 120:11061–11070. (c) Pesak DJ, Moore JS (1997) Angew Chem Int Ed Engl 36:1636–1639. (d) Lorenz K, Holter D, Stuhn B, Mülhaupt R, Frey H (1996) Adv Mater 8:414–416. (e) Baars MWPL, Sontjens SHM, Fischer HM, Peerlings HWI, Meijer EW (1998) Chem Eur J 4:2456–2466. (f) Saez IM, Goodby JW (2003) Chem Eur J 9:4869–4877

    Google Scholar 

  37. Newkome GR, Baker GR, Saunders MJ, Russo PS, Gupta VK, Yao Z-q, Miller JE, Bouillion K (1986) J Chem Soc Chem Commun 752–753

    Google Scholar 

  38. (a) Newkome GR, Baker GR, Arai S, Saunders MJ, Russo PS, Theriot KJ, Moorefield CN, Rogers LE, Miller JE, Lieux TR, Murray ME, Phillips B, Pascal L (1990) J Am Chem Soc 112:8458–8465. (b) Newkome GR, Moorefield CN, Baker GR, Behera RK, Escamilla GH, Saunders MJ (1992) Angew Chem Int Ed Engl 31:917–919. (c) Newkome GR, Lin X, Yaxiong C, Escamilla GH (1993) J Org Chem 58:3123–3129. (d) Yu KH, Russo PS, Younger L, Henk WG, Hua DW, Newkome GR, Baker G (1997) J Polym Sci Polym Phys 35:2787–2793

    Google Scholar 

  39. Jørgensen M, Bechgaard K, Bjørnholm T, Sommer-Larsen P, Hansen LG, Schaumburg K (1994) J Org Chem 59:5877–5882

    Article  Google Scholar 

  40. Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess HW, Hudson SD, Duan H (2002) Nature 419:384–387

    Article  CAS  Google Scholar 

  41. Le Gall T, Pearson C, Bryce MR, Petty MC, Dahlgaard H, Becher J (2003) Eur J Org Chem 3562–3568

    Google Scholar 

  42. Marmillon C, Gauffre F, Gulik-Krzywicki T, Loup C, Caminade A-M, Majoral J-P, Vors J-P, Rump E (2001) Angew Chem Int Ed 40:2626–2629

    Article  CAS  Google Scholar 

  43. (a) Launay N, Caminade A-M, Lahana R, Majoral J-P (1994) Angew Chem Int Ed Engl 33:1589–1592. (b) Chang JY, Ji HJ, Han MJ, Rhee SB, Cheong S, Yoon M (1994) Macromolecules 27:1376–1380

    Google Scholar 

  44. El Ghzaoui A, Gauffre F, Caminade A-M, Majoral J-P, Lannibois-Drean H (2004) Langmuir 20:9348–9353

    Article  Google Scholar 

  45. Klok H-A, Hwang JJ, Hartgerink JD, Stupp SI (2002) Macromolecules 35:6101–6111

    Article  CAS  Google Scholar 

  46. Stendahl JC, Li L, Claussen RC, Stupp SI (2004) Biomaterials 25:5847–5856

    Article  CAS  Google Scholar 

  47. Namazi H, Adeli M (2003) Eur Poly J 39:1491–1500

    Article  CAS  Google Scholar 

  48. (a) Carnahan MA, Grinstaff MW (2001) Macromolecules 34:7648–7655. (b) Carnahan MA, Middleton C, Kim J, Kim T, Grinstaff MW (2002) J Am Chem Soc 124:5291–5293. (c) Luman NR, Smeds KA, Grinstaff MW (2003) Chem Eur J 9:5618–5626

    Google Scholar 

  49. Gitsov I, Zhu C (2002) Macromolecules 35:8418–8427

    Article  CAS  Google Scholar 

  50. Jang W-D, Jiang D-L, Aida T (2000) J Am Chem Soc 122:3232–3233

    Article  CAS  Google Scholar 

  51. Jang W-D, Aida T (2003) Macromolecules 36:8461–8469

    Article  CAS  Google Scholar 

  52. Jang W-D, Aida T (2004) Macromolecules 37:7325–7330

    Article  CAS  Google Scholar 

  53. Zhang W, Gonzalez SO, Simanek EE (2002) Macromolecules 35:9015–9021

    Article  CAS  Google Scholar 

  54. Kim C, Kim KT, Chang Y, Song HH, Cho T-Y, Jeon H-J (2001) J Am Chem Soc 123:5586–5587

    Article  CAS  Google Scholar 

  55. Kim C, Lee SJ, Lee IH, Kim KT, Song HH, Jeon H-J (2003) Chem Mater 15:3638–3642

    Article  CAS  Google Scholar 

  56. Love CS, Hirst AR, Chechik V, Smith DK, Brennan C, Ashworth I (2004) Langmuir 20:6580–6585

    Article  CAS  Google Scholar 

  57. (a) Osterod F, Kraft A (1997) Chem Commun 1435–1436. (b) Kraft A, Osterod F (1998) J Chem Soc Perkin Trans 1 1019–1025

    Google Scholar 

  58. Mong TK-K, Niu A, Chow H-F, Wu C, Li L, Chen R (2001) Chem Eur J 7:686–699

    Article  CAS  Google Scholar 

  59. Zubarev ER, Pralle MU, Sone ED, Stupp SI (2001) J Am Chem Soc 123:4105–4106

    Article  CAS  Google Scholar 

  60. Zubarev ER, Stupp SI (2002) J Am Chem Soc 124:5762–5773

    Article  CAS  Google Scholar 

  61. de Gans BJ, Wiegand S, Zubarev ER, Stupp SI (2002) J Phys Chem B 106:9730–9736

    Article  Google Scholar 

  62. (a) Zubarev ER, Pralle MU, Sone ED, Stupp SI (2002) Adv Mater 14:198–203. (b) Stendahl JC, Li LM, Zubarev ER, Chen Y-R, Stupp SI (2002) Adv Mater 14:1540–1543

    Google Scholar 

  63. Sone ED, Zubarev ER, Stupp SI (2002) Angew Chem Int Ed 41:1705–1709

    Article  CAS  Google Scholar 

  64. Li L, Beniash E, Zubarev ER, Xiang W, Rabatic BM, Zhang G, Stupp SI (2003) Nat Mater 2:689–694

    Article  CAS  Google Scholar 

  65. Messmore BW, Hulvat JF, Sone ED, Stupp SI (2004) J Am Chem Soc 126:14452–14458

    Article  CAS  Google Scholar 

  66. (a) Hanabusa K, Miki T, Taguchi Y, Koyama T, Shirai H (1993) J Chem Soc Chem Commun 1382–1384. (b) Jeong SW, Shinkai S (1997) Nanotechnology 8:179–185. (c) Inoue K, Ono Y, Kanekiyo Y, Ishi-i T, Yoshihara K, Shinkai S (1999) J Org Chem 64:2933–2937. (d) Tata M, John VT, Waguespack YY, McPherson GL (1994) J Am Chem Soc 116:9464–9470. (e) Simmons BA, Taylor CE, Landis FA, John VT, McPherson GL, Schwartz DK, Moore R (2001) J Am Chem Soc 123:2414–2421. (f) Willemen HM, Vermonden T, Marcelis ATM, Sudhölter EJR (2002) Langmuir 18:7102–7106. (g) de Loos M, van Esch J, Kellogg RM, Feringa BL (2001) Angew Chem Int Ed 40:613–616. (h) Nakano K, Hishikawa Y, Sada K, Miyata M, Hanabusa K (2000) Chem Lett 1170–1171

    Google Scholar 

  67. (a) Maitra U, Kumar PV, Chandra N, D’Sousa LJ, Prasanna MD, Raju AR (1999) Chem Commun 595–596. (b) Friggeri A, Gronwald O, van Bommel KJC, Shinkai S, Reinhoudt DN (2002) J Am Chem Soc 124:10754–10758. (c) Babu P, Sangeetha NM, Vijaykumar P, Maitra U, Rissanen K, Raju AR (2003) Chem Eur J 9:1922–1932

    Google Scholar 

  68. (a) Ihara H, Sakurai T, Yamada T, Hashimoto T, Takafuji M, Sagawa T, Hachisako H (2002) Langmuir 18:7120–7123 (b) Dukh M, Saman D, Kroulik J, Cerny I, Pouzar V, Kral V, Drasar P (2003) Tetrahedron 59:4069–4076

    Google Scholar 

  69. (a) George M, Weiss RG (2003) Langmuir 19:1017–1025. (b) George M, Weiss RG (2001) J Am Chem Soc 123:10393–10394

    Google Scholar 

  70. Partridge KS, Smith DK, Dykes GM, McGrail PT (2001) Chem Commun 319–320

    Google Scholar 

  71. Dykes GM, Smith DK (2003) Tetrahedron 59:3999–4009

    Article  CAS  Google Scholar 

  72. Hirst AR, Smith DK, Feiters MC, Geurts HPM (2004) Langmuir 20:7070–7077

    Article  CAS  Google Scholar 

  73. Hirst AR, Smith DK (2004) Langmuir 20:10851–10857

    Article  CAS  Google Scholar 

  74. Hirst AR, Smith DK (2004) Org Biomol Chem 2:2965–2971

    Article  CAS  Google Scholar 

  75. Huang B, Hirst AR, Smith DK Castelletto V, Hamley IW (2005) J Am Chem Soc 127:7130–7139

    Article  CAS  Google Scholar 

  76. Hirst AR, Smith DK, Feiters MC, Geurts HPM (2004) Chem Eur J 10:5901–5910

    Article  CAS  Google Scholar 

  77. Hirst AR, Smith DK, Feiters MC, Geurts HPM, Wright AC (2003) J Am Chem Soc 125:9010–9011

    Article  CAS  Google Scholar 

  78. Enomoto M, Kishimura A, Aida T (2001) J Am Chem Soc 123:5608–5609

    Article  CAS  Google Scholar 

  79. Hardy JG, Hirst AR, Smith DK, Ashworth I, Brennan C (2005) Chem Commun 385–387

    Google Scholar 

  80. (a) Luo X, Liu B, Liang Y (2001) Chem Commun 1556–1557. (b) Yamada N, Imai T, Koyama E (2001) Langmuir 17:961–963. (c) Bhattacharya S, Krishnan-Ghosh Y (2001) Chem Commun 185–186. (d) Estroff LA, Huang JS, Hamilton AD (2003) Chem Commun 2958–2959. (e) Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K (2004) Helv Chim Acta 87:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Smith .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirst, A.R., Smith, D.K. (2005). Dendritic Gelators. In: Low Molecular Mass Gelator. Topics in Current Chemistry, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107178

Download citation

Publish with us

Policies and ethics