Skip to main content

Gelation with Small Molecules: from Formation Mechanism to NanostructureArchitecture

  • Chapter
  • First Online:
Low Molecular Mass Gelator

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 256))

Abstract

The mechanism of fiber and fiber network formation of small molecular gelling agents is treated on the basis of a generic heterogeneous nucleation model. The formation of a crystallite fiber network can take place via the so-called crystallographic mismatch branching. At very low supersaturations, unbranched fibers form predominantly. As supersaturation increases, small-angle crystallographic mismatch branching occurs at the side face of growth fibers. At very high supersaturations, the so-called wide-angle crystallographic mismatch branching becomes kinetically favorable. Both give rise to the formation of fiber networks, but of different types. Controlling the branching of the nanofibers of small molecular gelatins allows us to achieve the micro/nanostructure architecture of networks having the desired rheological properties. In this regard, the engineering of supramolecular functional materials can be achieved by constructing and manipulating the micro/nanostructure in terms of a “branching creator”, or by tuning processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

Activity

C :

Concentration

D f :

Fractal or Hausdorff~Besicovitch dimension of a pattern

d :

Diameter of an object

DIOP:

Di-(2-ethylhexyl phthalate) (C8H17COO)2 (C6H4)

EVACP:

Ethylene/vinyl acetate copolymer

f(m):

Interfacial correlation function

G * :

Complex modulus

G′:

Storage modulus

G′′:

Loss modulus

GP-1:

N-lauroyl-l-glutamic acid di-n-butylamide

ΔG :

Gibbs free-energy barrier

h :

Height of step of crystal surface

Δh m :

Enthalpy of melting per molecule

ISA:

Isostearyl alcohol

L-DHL:

Lanosta-8,24-dien-3β-ol:24,25-dihydrolanosterol = 56:44

J :

Nucleation rate

k :

Boltzmann constant

m :

Interfacial matching parameter

N :

Number of particles or segments

N g :

Number of crystals per volume

P :

Pressure

r c :

Radius of curvature of critical nucleus

R :

Radius of gyration of a pattern

R g :

Growth rate of fiber along the axial direction

SA-CMB:

Small-angle crystallographic mismatch branching

SEM:

Scanning electron microscopy

T :

Temperature

t s :

Nucleation induction time

t :

Time

WA-CMB:

Wide-angle crystallographic mismatch branching

νg :

Growth rate of bulk crystals

X :

Crystallinity of a system

φ:

Volume fraction of crystal materials

γ:

Interfacial free energy

γstep :

Step free energy of crystal surface

μ:

Chemical potential

η:

Viscosity

θ:

Contact angle

Ω:

Volume per structural unit

τ:

Induction time for the nucleation of new fibers on the host fibers

σ:

Supersaturation

ω:

Angular frequency

ξ:

Branching distance

References

  1. Mio MJ, Moore JS (2000) MRS Bull 25:6

    Article  Google Scholar 

  2. Derossi D, Kajiwara K, Osada Y, Yamauchi A (1991) Polymer Gels – Fundamentals and Biomedical Applications. Plenum Press, New York, p 206

    Google Scholar 

  3. Guenet JM (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London

    Google Scholar 

  4. Corriu RJP, Leclercq D (1996) Angew Chem 108:1524

    Article  Google Scholar 

  5. Reetz MI (1997) Adv Mater 9:943

    Article  CAS  Google Scholar 

  6. Terech P, Weiss RG (1997) Chem Rev 97:3133

    Article  CAS  Google Scholar 

  7. Beginn U, Keinath S, Möller M (1998) Macromol Chem Phys 199:2379

    Article  CAS  Google Scholar 

  8. Brunsveld L, Folmer BJB, Meijer EW (2000) MRS Bull 25:49

    Article  CAS  Google Scholar 

  9. van Esth JH, Feringa BL (2000) Angew Chem Int Ed Engl 39:2263

    Article  Google Scholar 

  10. Oya T, Enoki T, Grosberg AU, Masamune S, Sakiyma T, Tekeoka Y, Tanaka K, Wang G, Tilmaz Y, Feid MS, Dasari R, Tanaka T (1999) Science 286:1543

    Article  CAS  Google Scholar 

  11. Terech P, Rodrigez V, Barnes JD, Mckenna GD (1994) Langmuir 10:3406

    Article  CAS  Google Scholar 

  12. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Dekker, New York, p 145

    Google Scholar 

  13. Lescanne M, Grondin P, d’Ale’o A, Fages F, Pozzo J-L, Mondain-Monval O, Reinheimer P, Colin A (2004) Langmuir 20:3032

    Article  CAS  Google Scholar 

  14. Lescanne M, Colin A, Mondain-Monval O, Fages F, Pozzo J-L (2003) Langmuir 19:2013

    Article  CAS  Google Scholar 

  15. Liu XY, Sawant PD (2002) Adv Mater 14:421

    Article  Google Scholar 

  16. Liu XY, Sawant PD (2001) Appl Phys Lett 79:3518

    Article  CAS  Google Scholar 

  17. Liu XY, Sawant PD (2002) Angew Chem Int Ed Engl 41:3641

    Article  CAS  Google Scholar 

  18. Liu XY, Sawant PD, Tan WB, Noor IBM, Pramesti C, Chen BH (2002) J Am Chem Soc 124:15055

    Article  CAS  Google Scholar 

  19. Liu XY, Sawant PD (2002) Chem Phys Chem 3:374

    Article  CAS  Google Scholar 

  20. Liu XY, Bennema P (1994) J Cryst Growth 135:209

    Article  CAS  Google Scholar 

  21. Liu XY, Bennema P (1993) J Appl Crystallogr 26:229

    Article  CAS  Google Scholar 

  22. Chernov AA (1984) Modern crystallography III. Crystal growth. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Bennema P, Gilmer GH (1973) In: Hartman P (ed) Crystal growth – an introduction. North-Holland, Amsterdam, p 263

    Google Scholar 

  24. Kashchiev D (1969) Surf Sci 14:209

    Article  Google Scholar 

  25. Shi G, Seinfeld JH, Okuyarna K (1990) Phys Rev A 41:2101

    Article  CAS  Google Scholar 

  26. Wu DT (1992) J Chem Phys 97:2644

    Article  CAS  Google Scholar 

  27. Shneidman VA, Weinberg MC (1992) J Chem Phys 97:621

    Google Scholar 

  28. Kashchiev D (1995) In: van der Eerden JP, Bruinsma OSL (eds) Science and technology of crystal growth. Kluwer, Dordrecht, p 53

    Chapter  Google Scholar 

  29. Liu XY (2001) Appl Phys Lett 79:39; Liu XY (2001) J Phys Chem B 105:11550

    Google Scholar 

  30. Ning D, Liu XY (2002) Appl Phys Lett 81:445

    Article  CAS  Google Scholar 

  31. Liu XY (2001) In: Sato K, Nakajima K, Furukawa Y (eds) Advances in crystal growth research. Elsevier, Amsterdam, p 42

    Chapter  Google Scholar 

  32. Liu XY (1999) J Chem Phys 111:1628

    Article  CAS  Google Scholar 

  33. Liu XY (2000) J Chem Phys 112:9949

    Article  CAS  Google Scholar 

  34. Fowler R, Giggenhein EA (1960) Statistical thermodynamics. Cambridge University Press, London

    Google Scholar 

  35. Farkas L (1927) Z Phys Chem 125:236

    CAS  Google Scholar 

  36. Gebhardt M (1972) In: Hartman P (ed) Crystal growth: an introduction. North-Holland, Amsterdam, p 105

    Google Scholar 

  37. Liu XY (2001) Surf Rev Lett 8:423

    CAS  Google Scholar 

  38. Liu XY, Maiwa K, Tsukamoto K (1997) J Chem Phys 106:1870

    Article  CAS  Google Scholar 

  39. Liu XY, van den Berg EPG, Zauner ARA, Bennema P (2000) J Phys Chem B 104:7211942

    Google Scholar 

  40. Bennema P, Liu XY, Lewtas K, Tack RD, Rijpkema JJM, Roberts KJ (1992) J Cryst Growth 121:679

    Article  CAS  Google Scholar 

  41. Cahn JW, Hillig WB, Sears GW (1964) Acta Metall 12:1421

    Article  CAS  Google Scholar 

  42. Vicsek T (1992) Fractal growth phenomena, 2nd edn. World Scientific, Singapore

    Google Scholar 

  43. Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Langer JS (1989) Science 243:1150

    Article  CAS  Google Scholar 

  45. Ben Jacob E, Garik P (1990) Nature 343:523

    Article  Google Scholar 

  46. Huang SC, Glicksman ME (1981) Acta Metall 29:717

    Article  CAS  Google Scholar 

  47. Langer JS (1980) Rev Mod Phys 52:1

    Article  CAS  Google Scholar 

  48. Kessler DA, Koplik J, Levine H (1988) Adv Phys 37:255

    Article  Google Scholar 

  49. Brener EA, Melnikov VI (1991) Adv Phys 40:53

    Article  CAS  Google Scholar 

  50. Ben-Jocob E (1993) Contemp Phys 34:247

    Article  Google Scholar 

  51. Kepler J (1966) De nive sexangula transl Hardie. Clarendon, Oxford

    Google Scholar 

  52. Vandewalle N, Ausloos M (1997) Phys Rev E55:94

    Article  CAS  Google Scholar 

  53. Havlin S, Nossal R, Trus B (1985) Phys Rev A32:3829

    Article  CAS  Google Scholar 

  54. Muthukumar M, Winter HH (1986) Macromolecules 19:1284

    Article  CAS  Google Scholar 

  55. Liu XY, Strom CS (2000) J Chem Phys 112:4408

    Article  Google Scholar 

  56. Strom CS, Liu XY, Wang M (2000) J Phys Chem B104:9638

    Article  Google Scholar 

  57. Phillips PJ (1994) In: Hurle DTJ (ed) Handbook of crystal growth. North-Holland, Amsterdam, p 1167

    Google Scholar 

  58. Keith HD, Padden FJ (1963) J Appl Phys 34:2409

    Article  CAS  Google Scholar 

  59. Cayley A (1858) Philos Mag 28:374

    Google Scholar 

  60. Vandewalle N, Ausloos M (1997) Phys Rev E55:94

    Article  CAS  Google Scholar 

  61. Barabasi L, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  62. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  63. Witten TA, Sander LM (1981) Phys Rev Lett 47:1400

    Article  CAS  Google Scholar 

  64. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Dekker, New York, p 145

    Google Scholar 

  65. Vicsek T (1992) Fractal growth phenomena, 2nd edn. World Scientific, Singapore

    Google Scholar 

  66. te Nijenhuis K, Winter HH (1989) Macromolecules 22:411

    Article  Google Scholar 

  67. Shi C, Huang Z, Kilic S, Xu J, Enick RM, Beckman EJ, Carr AJ, Melendez RE, Hamilton RD (1999) Science 286:1540

    Article  CAS  Google Scholar 

  68. Hanabusa K, Yamada M, Kimura M, Shirai H (1996) Angew Chem 108:2086; (1996) Angew Chem Int Ed Engl 35:1949

    Google Scholar 

  69. Lin Y, Kachar B, Weiss RG (1989) J Am Chem Soc 111:5542

    Article  CAS  Google Scholar 

  70. Yoza K, Amanokura N, Ono Y, Aoka T, Shinmori H, Takeuchi M, Shinkai S, Reinhoudt DN (1999) Chem Eur J 5:2722

    Article  CAS  Google Scholar 

  71. Aggeli A, Bell M, Boden N, Keen IN, Knowles RF, McLeish TCB, Pitkeathly M, Radford SE (1997) Nature 386:259

    Article  CAS  Google Scholar 

  72. Yan Esch J, Schoonbeek F, de Loos M, Kooiman H, Spek AL, Kellogg RM, Feringa BL (1999) Chem Eur J 5:937

    Article  Google Scholar 

  73. (a) Oda R, Hue I, Candau SJ (1998) Angew Chem 110:2835; (b) Oda R, Hue I, Candau S (1998) Angew Chem Int Ed Engl 37:2689

    Google Scholar 

  74. Hafkamp RJH, Feiters MC, Nolte RJM (1999) J Org Chem 64:412

    Article  CAS  Google Scholar 

  75. Hanabusa K, Matsumoto Y, Miki T, Koyama T, Shirai H (1994) J Chem Soc Chem Commun 1401

    Google Scholar 

  76. Hanabusa K, Shimura K, Hirose K, Kimura M, Shirai H (1996) Chem Lett 885

    Google Scholar 

  77. van Esch J, De Feyter S, Kellogg RM, De Schryver E, Feringa BL (1997) Chem Eur J 3:1238

    Article  Google Scholar 

  78. de Loos M, van Esch J, Stokroos I, Kellogg RM, Feringa BL (1997) J Am Chem Soc 112:12675

    Article  Google Scholar 

  79. Osada Y, Gong JP (1998) Adv Mater 10:827

    Article  CAS  Google Scholar 

  80. Flory RJ (1974) Faraday Discuss Chem Soc 57:8

    Article  Google Scholar 

  81. Tanaka I (1981) Am Sci 244:110

    Google Scholar 

  82. Beginn U, Keinath S, Möller M (1998) Macromol Chem Phys 199:2379

    Article  CAS  Google Scholar 

  83. Gu W, Lu L, Chapman GB, Weiss RG (1997) Chem Commun 543

    Google Scholar 

  84. Hafkamp RJ, Kokke BPA, Danke IM, Geurts HPM, Rowan AE, Feiters MC, Nolte R JM (1997) Chem Commun 545

    Google Scholar 

  85. Engelkamp H, Middelbeek S, Nolte RJM (1999) Science 284:785

    Article  CAS  Google Scholar 

  86. Liu XY, Lim SW (2003) J Am Chem Soc 125:888

    Article  CAS  Google Scholar 

  87. Liu XY, Tsukamoto K, Sorai M (2000) Langmuir 16:5499

    Article  CAS  Google Scholar 

  88. Laaksonen A, Talanquer V, Oxtoby DW (1995) Annu Rev Phys Chem 46:489

    Article  CAS  Google Scholar 

  89. Liu XY, Boek ES, Briels WJ, Bennema P (1995) Nature 374:342

    Article  CAS  Google Scholar 

  90. Liu XY, Bennema P (1993) J Chem Phys 98:5863

    Article  CAS  Google Scholar 

  91. Liu XY(1999) Phys Rev B 60:2810

    Article  CAS  Google Scholar 

  92. Liu XY, Bennema P (1993) J Chem Phys 98:5863

    Article  CAS  Google Scholar 

  93. Davey RJ, Garside J, Hilton AM, McEwan D, Morrison JW (1996) J Cryst Growth 166:971

    Article  CAS  Google Scholar 

  94. da Silva Couto M, Liu XY, Meekes H, Bennema P (1994) J Appl Phys 75:627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Y. Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, X.Y. (2005). Gelation with Small Molecules: from Formation Mechanism to NanostructureArchitecture. In: Low Molecular Mass Gelator. Topics in Current Chemistry, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107170

Download citation

Publish with us

Policies and ethics