Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

The visualization of stationary and time-dependent flow is an important and chal- lenging topic in scientific visualization. Its aim is to represent transport phenomena governed by vector fields in an intuitively understandable way. In this paper, we review the use of meth- ods based on partial differential equations (PDEs) to post-process flow datasets for the purpose of visualization. This connects flow visualization with image processing and mathematical multi-scale models. We introduce the concepts of flow operators and scale-space and explain their use in modeling post processing methods for flow data. Based on this framework, we present several classes of PDE-based visualization methods: anisotropic linear diffusion for stationary flow; transport and diffusion for non-stationary flow; continuous clustering based on phase-separation; and an algebraic clustering of a matrix-encoded flow operator. We illus- trate the presented classes of methods with results obtained from concrete flow applications, using datasets in 2D, flows on curved surfaces, and volumetric 3D fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal., 123 (3):199–257, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Brandt. Algebraic multigrid theory: the symmetric case. In Preliminary Procs. of the Intl. Multigrid Conf., Copper Mountain, Colorado, April 1983.

    Google Scholar 

  3. A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid for sparse matrix equations. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  4. B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. In J. T. Kajiya, editor, Computer Graphics (SIGGRAPH '93 Proceedings), volume 27, pages 263–272, Aug. 1993.

    Google Scholar 

  5. J. Cahn and J. Hilliard. Free energy of a non-uniform system I. Interfacial free energy. J. Chem. Phys., 28:258–267, 1958.

    Article  Google Scholar 

  6. W. de Leeuw. Divide and conquer spot noise. In Proceedings of Supercomputing 97 (CD-ROM). ACM SIGARCH and IEEE, 1997.

    Google Scholar 

  7. W. de Leeuw and R. van Liere. Multi-level topology for flow visualization. Comput. Graph., 24(3):325–331, 2000.

    Article  Google Scholar 

  8. W. C. de Leeuw and J. J. van Wijk. Enhanced spot noise for vector field visualization. In Proceedings Visualization '95, 1995.

    Google Scholar 

  9. U. Diewald, T. Preusser, and M. Rumpf. Anisotropic diffusion in vector field visualization on enclidean domains and surfaces. IEEE Trans. Vis. Comput. Graph., 6(2):139–149, 2000.

    Article  Google Scholar 

  10. C. M. Elliott. The Cahn–Hilliard model for the kinetics of phase separation. Num. Math., pages 35–73, 1988.

    Google Scholar 

  11. L. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolution. In Proceedings IEEE Visualization '94, pages 240–246, 1994.

    Google Scholar 

  12. H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikard, and J. J. van Wijk. A phase field model for continuous clustering on vector fields. IEEE TVCG, 7(3):230–241, 2000.

    Google Scholar 

  13. M. Griebel, A. Schweitzer, T. Preusser, M. Rumpf, and A. Telea. Flow field clustering via algebraic multigrid. In Proceedings of IEEE Visualization 2004, 2004.

    Google Scholar 

  14. B. Heckel, G. Weber, B. Hamann, and K. I. Joy. Construction of vector field hierarchies. Proceedings IEEE Visualization '99, pages 19–25, 1999.

    Google Scholar 

  15. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Comput. Graph. Appl., 11(3):36–46, 1991.

    Article  Google Scholar 

  16. V. Interrante and C. Grosch. Stragegies for effectively visualizing 3D flow with volume LIC. In Proceedings IEEE Visualization '97, pages 285–292, 1997.

    Google Scholar 

  17. B. Jobard, G. Erlebacher, and Y. M. Hussaini. Lagrangian-eulerian advection for unsteady flow visualization. In Proceedings of IEEE Visualization '01, San Diego, CA, October 2001.

    Google Scholar 

  18. B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. In W. Lefer, M. Grave (eds.), Visualization in Scientific Computing '97, 1997.

    Google Scholar 

  19. B. Jobard and W. Lefer. The motion map: Efficient computation of steady flow animations. In Proceedings IEEE Visualization '97, pages 323–328, 1997.

    Google Scholar 

  20. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The state of the art in flow visualization: Dense and texture-based techniques. Comput. Graph. Forum, 23(2):203–221, 2004.

    Article  Google Scholar 

  21. R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating swirl and tumble flow with a comparison of visualization techniques. In Proceedings of IEEE Visualization '04, pages 51–58, 2004.

    Google Scholar 

  22. H. Löffelmann, T. Kuvcera, and E. Gröller. Visualizing Poincaré maps together with the underlying flow. In Mathematical Visualization, pages 315–328. Springer, Berlin, 1998.

    Google Scholar 

  23. N. Max and B. Becker. Flow visualization using moving textures. In Proceedings of the ICASE/LaRC Symposium on Visualizing Time-Varying Data, pages 77–87, 1995.

    Google Scholar 

  24. N. Max, R. Crawfis, and C. Grant. Visualizing 3D Velocity Fields Near Contour Surface. In Proceedings IEEE Visualization '94, pages 248–254, 1994.

    Google Scholar 

  25. A. Novick-Cohen. The Cahn-Hilliard equation: mathematical and modelling perspectives. Adv. Math. Sci. Appl., 8:965–985, 1998.

    MathSciNet  MATH  Google Scholar 

  26. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12:629–630, 1990.

    Article  Google Scholar 

  27. C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive exploration of volume line integral convolution based on 3D texture mapping. In Proceedings IEEE Visualization '99, pages 233–240, 1999.

    Google Scholar 

  28. J. W. Ruge and K. Stüben. Efficient Solution of Finite Difference and Finite Element Equations by Algebraic Multigrid. In D. J. Paddon and H. Holstein, editors, Multigrid Methods for Integral and Differntial Equations, The Institute of Mathematics and its Applications Conference Series. Clarendon, Oxford, 1985.

    Google Scholar 

  29. R. Wegenkittl and E. Gröller. Fast oriented line integral convolution for vector field visualization via the internet. In Proceedings IEEE Visualization '97, pages 309–316, 1997.

    Google Scholar 

  30. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall, New Jersey, 1995.

    Google Scholar 

  31. H. W. Shen and D. L. Kao. UFLIC: a line integral convolution algorithm for visualizing unsteady flows. In Proceedings IEEE Visualization '97, pages 317–323, 1997.

    Google Scholar 

  32. D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution. In SIGGRAPH 95 Conference Proceedings, pages 249–256. ACM SIGGRAPH, Addison-Wesley, New York, 1995.

    Google Scholar 

  33. D. Stalling, M. Zöckler, and H.-C. Hege. Fast display of illuminated field lines. IEEE Trans. Vis. Comput. Graph., 3(2), 1997. ISSN 1077–2626.

    Google Scholar 

  34. A. Telea and J. J. van Wijk. 3D IBFV: Hardware-accelerated 3d flow visualization. Proceedings IEEE Visualization '03, pages 223–240, 2003.

    Google Scholar 

  35. A. C. Telea and J. J. van Wijk. Simplified representation of vector fields. Proceedings IEEE Visualization '99, pages 35–42, 1999.

    Google Scholar 

  36. V. Thomée. Galerkin – Finite Element Methods for Parabolic Problems. Springer, Berlin, 1984.

    MATH  Google Scholar 

  37. U. Trottenberg, C. W. Osterlee, and A. Schüller. Multigrid, Appendix A: An Introduction to Algebraic Multigrid by K. Stüben, pages 413–532. Academic, San Diego, 2001.

    Google Scholar 

  38. G. Turk and D. Banks. Image-guided streamline placement. In Computer Graphics (SIGGRAPH '96 Proceedings), 1996.

    Google Scholar 

  39. T. Urness, V. Interrante, I. Marusic, E. Longmire, and B. Ganapathisubramani. Effectively visualizing multi-valued flow data using color and texture. In Proceedings IEEE Visualization '03, pages 115–122, 2003.

    Google Scholar 

  40. J. J. van Wijk. Spot noise-texture synthesis for data visualization. In T. W. Sederberg, editor, Computer Graphics (SIGGRAPH '91 Proceedings), volume 25, pages 309–318, July 1991.

    Google Scholar 

  41. J. J. van Wijk. Image based flow visualization. Computer Graphics (Proc. SIGGRAPH '02), ACM, pp. 263–279, 2001.

    Google Scholar 

  42. J. J. van Wijk. Image based flow visualization for curved surfaces. Proceedings IEEE Visualization '03, pages 123–130, 2003.

    Google Scholar 

  43. R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields: Rendering of oriented line integral convolution. In CA '97: Proceedings of the Computer Animation, pages 15–21, 1997.

    Google Scholar 

  44. J. Weickert. Anisotropic diffusion in image processing. Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

  45. D. Weiskopf and G. Erlebacher. Flow visualization overview. In Handbook of Visualization, pages 261–278. Elsevier, Amsterdam, 2005.

    Google Scholar 

  46. D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework for spacetime-coherent visualization of time-dependent vector fields. In Proceedings IEEE Visualization '03, pages 107–114, 2003.

    Google Scholar 

  47. D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware-accelerated lagrangian-eulerian texture advection for 2D flow visualizations. In Proceedings of the Vision Modeling and Visualization Conference 2002 (VMV-02), pages 439–446, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preusser, T., Rumpf, M., Telea, A. (2009). Flow Visualization via Partial Differential Equations. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_9

Download citation

Publish with us

Policies and ethics