Skip to main content

Stability and Computation of Medial Axes - a State-of-the-Art Report

  • Chapter
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

The medial axis of a geometric shape captures its connectivity. In spite of its inherent instability, it has found applications in a number of areas that deal with shapes. In this survey paper, we focus on results that shed light on this instability and use the new insights to generate simplified and stable modifications of the medial axis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom., 22:481–504, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Amenta, M. Bern, and D. Eppstein. The crust and the beta-skeleton: combinatorial curve reconstruction. Graph. Model. Image Process., 60:125–135, 1998.

    Article  Google Scholar 

  3. N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl., 19:127–153, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. V. Anoshkina, A. G. Belyaev, O. G. Okunev, and T. L. Kunii. Ridges and ravines: a singularity approach. Internat. J. Shape Modeling, 1:1–11, 1994.

    Article  MATH  Google Scholar 

  5. D. Attali. Squelettes et graphes de Voronoi 2-d et 3-d. PhD thesis, Univ. Joseph Fourier, Grenoble, 1995.

    Google Scholar 

  6. D. Attali and J.-D. Boissonnat. Complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete Comput. Geom., 30:437–452, 2003.

    MathSciNet  MATH  Google Scholar 

  7. D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete Comput. Geom., 31:369–384, 2004.

    MathSciNet  MATH  Google Scholar 

  8. D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of the Delaunay triangulation of points on surfaces: the smooth case. In Proc. 19th Ann. Sympos. Comput. Geom., pages 201–210, 2003.

    Google Scholar 

  9. D. Attali and J.-O. Lachaud. Delaunay conforming iso-surface. Skeleton Extraction and Noise Removal, 19:175–189, 2001.

    MathSciNet  MATH  Google Scholar 

  10. D. Attali and A. Montanvert. Modeling noise for a better simplification of skeletons. In Proc. Internat. Conf. Image Process., volume 3, pages 13–16, 1996.

    Google Scholar 

  11. F. Aurenhammer and H. Imai. Geometric relations among Voronoi diagrams. Geom. Dedicata, 27:65–75, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380, MIT, Cambridge, MA, 1967.

    Google Scholar 

  13. J.-D. Boissonnat and F. Cazals. Natural neighbor coordinates of points on a surface. Comput. Geom. Theory Appl., 19:155–173, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In Proc. 14th ACM-SIAM Sympos. Discrete Alg., pages 305–312, 2003.

    Google Scholar 

  15. J. W. Brandt. Convergence and continuity criteria for discrete approximations of the continuous planar skeletons. CVGIP: Image Understanding, 59:116–124, 1994.

    Article  Google Scholar 

  16. J. W. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi diagram. CVGIP: Image Understanding, 55:329–337, 1992.

    Article  MATH  Google Scholar 

  17. C. Burnikel. Exact computation of Voronoi diagrams and line segment intersections. PhD thesis, Universität des Saarlandes, March 1996.

    Google Scholar 

  18. T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Outputsensitive construction of 4-d polytopes and 3-d Voronoi diagrams. Discrete Comput. Geom., 18:433–454, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Chazal and A. Lieutier. Stability and homotopy of a subset of the medial axis. In Proc.9th ACM Sympos. Solid Modeling Appl., 2004.

    Google Scholar 

  20. F. Chazal and R. Soufflet. Stability and finiteness properties of medial axis and skeleton. J. Control Dyn. Syst., 10:149–170, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. H. Chen, L. F. Pau, and P. S. Wang, editors. Segmentation tools in Mathematical Morphology. World Scientific, Singapore, 1993.

    Google Scholar 

  22. H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform. Pacific J. Math., 181:57–88, 1997.

    Article  MathSciNet  Google Scholar 

  23. S. W. Choi and H.-P. Seidel. Linear one-sided stability of MAT for weakly injective 3D domain. In Proc. 7th ACM Sympos. Solid Modeling Appl., pages 344–355, 2002.

    Google Scholar 

  24. T. Culver. Computing the medial axis of a polyhedron reliably and efficiently. Depart. comput. sci., Univ. North Carolina, Chapel Hill, NC, 2000.

    Google Scholar 

  25. T. K. Dey, J. Giesen, and S. Goswami. Shape segmentation and matching with flow discretization. In F. Dehne et al., editor, Proc. Workshop Alg. Data Structures, pages 25–36, 2003.

    Google Scholar 

  26. T. K. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex. In Proc. 7th ACM Sympos. Solid Modeling Appl., pages 356–366, 2002.

    Google Scholar 

  27. T. K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica, 38:179–200, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. R. Dill, M. D. Levine, and P. B. Noble. Multiple resolution skeletons. IEEE Trans. Pattern Anal. Mach. Intell., 9:495–504, 1987.

    Article  Google Scholar 

  29. H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space. In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Discrete and Computational Geometry – The Goodman-Pollack Festschrift, pages 379–404. Springer, Berlin, 2004.

    Google Scholar 

  30. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom., 28:511–533, 2002.

    MathSciNet  MATH  Google Scholar 

  31. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics, 13:43–72, 1994.

    Article  MATH  Google Scholar 

  32. M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified medial axis. In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 96–107, 2003.

    Google Scholar 

  33. P. Giblin and B. B. Kimia. A formal classification of 3D medial axis points and their local geometry. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 26:238–251, 2004.

    Article  Google Scholar 

  34. J. Giesen and M. John. Surface reconstruction based on a dynamical system. In Proc. 23rd Ann. Conf. European Association for Computer Graphics (Eurographics), Computer Graphics Forum, pages 363–371, 2002.

    Google Scholar 

  35. R. Haralick and L. Shapiro. Computer and Robot Vision, volume 1. Addison-Wesley, New York, 1992.

    Google Scholar 

  36. M. Held. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Comput. Geom. Theory Appl., 18:95–123, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. W. Hirsch. Differential Topology. Springer, New York, 1988.

    Google Scholar 

  38. M. Hisada, A. G. Belyaev, and T. L. Kunii. A skeleton-based approach for detection of perceptually salient features on polygonal surfaces. In Computer Graphics Forum, volume 21, pages 689–700, 2002.

    Google Scholar 

  39. C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, SanMateo, CA, 1989.

    Google Scholar 

  40. B. Jähne. Digital Image Processing, 4th edition. Springer, Berlin, 1997.

    MATH  Google Scholar 

  41. L. Lam, S.-W. Lee, and C. Y. Suen. Thinning methodologies – a comprehensive survey. IEEE Trans. on PAMI, 14(9):869–885, 1992.

    Article  Google Scholar 

  42. J.-C. Latombe. Robot Motion Planning. Kluwer Academic, Boston, 1991.

    Book  Google Scholar 

  43. A. Lieutier. Any open bounded subset of Rn has the same homotopy type as its medial axis. In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 65–75. ACM, 2003.

    Google Scholar 

  44. G. Matheron. Examples of topological properties of skeletons. In J. Serra, editor, Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, pages 217–238. Academic, London, 1988.

    Google Scholar 

  45. R. Ogniewicz. A multiscale MAT from Voronoi diagrams: the skeleton-space and its aplication to shape description and decomposition. In C. Arcelli et al., editors, Aspects of Visual Form Processing, pages 430–439. World Scientific, Singapore, 1994.

    Google Scholar 

  46. M. A. Price and C. G. Armstrong. Hexahedral mesh generation by medial surface subdivision: Part II. solids with flat and concave edges. Int. J. Numer. Methods Eng., 40:111–136, 1997.

    Article  Google Scholar 

  47. R. Ramamurthy and R. T. Farouki. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries, I and II. J. Comput. Appl. Math., 102:119–141 and 253–277, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Sanniti di Baja and E. Thiel. A multiresolution shape description algorithm. In D. Chetverikov et al., editor, Lecture Notes in Computer Science, volume 719, pages 208–215. Springer, Berlin, 1993.

    Google Scholar 

  49. D. Shaked and A. M. Bruckstein. Pruning medial axes. Comput. Vis. Image Underst., 69:156–169, 1998.

    Article  Google Scholar 

  50. A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral mesh generation using the embedded Voronoi graph. Engineering Comput., 15:248–262, 1999.

    Article  MATH  Google Scholar 

  51. E. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological properties of medial axis transforms. Graph. Model. Image Process., 58:574–592, 1996.

    Article  Google Scholar 

  52. M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision, 2nd edition. PWS, Pacific Grove, 1999.

    Google Scholar 

  53. F.E. Wolter. Cut locus and medial axis in global shape interrogation and representation. Technical Report Design Laboratory Memorandum 92-2, MIT, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Attali, D., Boissonnat, JD., Edelsbrunner, H. (2009). Stability and Computation of Medial Axes - a State-of-the-Art Report. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_6

Download citation

Publish with us

Policies and ethics