Skip to main content

Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization

  • Chapter
  • First Online:
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Iterative twofold convolution is proposed as an efficient high-quality two-stage fil- tering method for dense texture-based vector field visualization. The first stage employs a com- pact filter, evaluated via Lagrangian particle tracing. This stage facilitates a flexible design of filters and is a means of avoiding numerical diffusion. The second stage uses semi-Lagrangian texture advection with iterative alpha blending to efficiently implement a large-scale exponen- tial filter. A discussion of frequency-space properties and adequate sampling rates shows that this order of convolution operations permits large integration step sizes without loss of quality. Twofold convolution can be used for steady and unsteady vector fields, dye and noise advec- tion, as well as vector fields on flat manifolds or curved surfaces. The proposed approach is prepared for an efficient GPU implementation to achieve interactive visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Brook and R. J. Wynne. Signal Processing: Principles and Applications. Edward Arnold, London, 1988.

    Google Scholar 

  2. B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. In Proc. ACM SIGGRAPH 1993, pages 263–270, 1993.

    Google Scholar 

  3. F. C. Crow. Summed-area tables for texture mapping. Computer Graphics (Proc. ACM SIGGRAPH 1984), 18(3):207–212, 1984.

    Article  Google Scholar 

  4. G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-resolution flow visualization. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook, pages 279–293. Elsevier, Amsterdam, 2005.

    Chapter  Google Scholar 

  5. T. Frankel. The Geometry of Physics: An Introduction. Cambridge University Press, New York, 2001.

    Google Scholar 

  6. G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for 3D shape representation. IEEE Transactions on Visualization and Computer Graphics, 9(4):512–524, 2003.

    Article  Google Scholar 

  7. P. S. Heckbert. Filtering by repeated integration. Computer Graphics (Proc. ACM SIG-GRAPH 1986), 20(4):315–321, 1986.

    Article  Google Scholar 

  8. P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications, 6(11):56–67, 1986.

    Article  Google Scholar 

  9. H.-C. Hege and D. Stalling. Fast LIC with piecewise polynomial filter kernels. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization, pages 295–314. Springer, Heidelberg, 1998.

    Google Scholar 

  10. B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian advection of noise and dye textures for unsteady flow visualization. IEEE Transactions on Visualization and Computer Graphics, 8(3):211–222, 2002.

    Article  Google Scholar 

  11. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23(2):143–161, 2004.

    Article  Google Scholar 

  12. R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS: Image space based visualization of flow on surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(6):637–648, 2004.

    Article  Google Scholar 

  13. N. Max and B. Becker. Flow visualization using moving textures. In Proc. ICASW/LaRC Symposium on Visualizing Time-Varying Data, pages 77–87, 1995.

    Google Scholar 

  14. A. Okada and D. Lane. Enhanced line integral convolution with flow feature detection. In Proc. IS&T/SPIE Electronic Imaging 1997, pages 206–217, 1997.

    Google Scholar 

  15. A. Sanna, B. Montrucchio, and P. Montuschi. A survey on visualization of vector fields by texture-based methods. Recent Res. Devel. Pattern Rec., 1:13–27, 2000.

    Google Scholar 

  16. J. Shen, W. Shen, S. Castan, and T. Zhang. Sum-box technique for fast linear filtering. Signal Processing, 82(8):1109–1126, 2002.

    Article  MATH  Google Scholar 

  17. D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution. In Proc. ACM SIGGRAPH 1995, pages 249–256, 1995.

    Google Scholar 

  18. J. J. van Wijk. Spot noise – texture synthesis for data visualization. Computer Graphics (Proc. ACM SIGGRAPH 1991), 25(4):309–318, 1991.

    Article  Google Scholar 

  19. J. J. van Wijk. Image based flow visualization. ACM Transactions on Graphics, 21(3): 745–754, 2002.

    Google Scholar 

  20. R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields: Rendering of oriented line integral convolution. In Computer Animation 1997, pages 15–21, 1997.

    Google Scholar 

  21. D. Weiskopf. Dye advection without the blur: A level-set approach for texture-based visualization of unsteady flow. Computer Graphics Forum (Proc. Eurographics 2004), 23(3):479–488, 2004.

    Article  Google Scholar 

  22. D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework for spacetime-coherent visualization of time-dependent vector fields. In Proc. IEEE Visualization 2003, pages 107–114, 2003.

    Google Scholar 

  23. D. Weiskopf and T. Ertl. A hybrid physical/device-space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In Proc. Graphics Interface, pages 263–270, 2004.

    Google Scholar 

  24. D. Weiskopf, T. Schafhitzel, and T. Ertl. Real-time advection and volumetric illumination for the visualization of 3D unsteady flow. In Proc. Eurovis (EG/IEEE TCVG Symposium on Visualization), pages 13–20, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiskopf, D. (2009). Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_10

Download citation

Publish with us

Policies and ethics