Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We present a highly adaptive hierarchical representation of the topology of func- tions defined over two-manifold domains. Guided by the theory of Morse–Smale complexes, we encode dependencies between cancellations of critical points using two independent struc- tures: a traditional mesh hierarchy to store connectivity information and a new structure called cancellation trees to encode the configuration of critical points. Cancellation trees provide a powerful method to increase adaptivity while using a simple, easy-to-implement data struc- ture. The resulting hierarchy is significantly more flexible than the one previously reported (IEEE Trans. Vis. Comput. Graph. 10(4):385–396, 2004). In particular, the resulting hierar- chy is guaranteed to be of logarithmic height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural enhancement. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization 1998, pages 51–58, Los Alamitos, California, 1998. IEEE Computer Society Press.

    Google Scholar 

  2. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77(5):457–485, May 1970.

    Article  MathSciNet  Google Scholar 

  3. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data structure for two-dimensional Morse–Smale functions. In G. Turk, J. J. van Wijk, and R. Moorhead, editors, Proc. IEEE Visualization 2003, pages 139–146, Los Alamitos, California, 2003. IEEE Computer Society Press.

    Chapter  Google Scholar 

  4. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385–396, 2004.

    Article  Google Scholar 

  5. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational Geometry: Theory and Applications, 24(3):75–94, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Cayley. On contour and slope lines. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, XVIII:264–268, 1859.

    Google Scholar 

  7. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization 1999, pages 349–354. IEEE Computer Society Press, 1999.

    Google Scholar 

  8. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse–Smale complexes for piecewise linear 3-manifolds. In Proc. 19th Sympos. Comput. Geom., pages 361–370, 2003.

    Google Scholar 

  9. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87–107, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28:511–533, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. In W. Straßer, R. Klein, and R. Rau, editors, Theory and Practice of Geometric Modeling. Springer, Berlin, 1996.

    Google Scholar 

  12. J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11(3):36–46, 1991.

    Article  Google Scholar 

  13. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In E. Fiume, editor, Proceedings of ACM SIGGRPAH 2001, pages 203–212, New York, NY, USA, 2001. ACM.

    Google Scholar 

  14. J. C. Maxwell. On hills and dales. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, XL:421–427, 1870.

    Google Scholar 

  15. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

    MATH  Google Scholar 

  16. M. Morse. Relations between the critical points of a real functions of n independent variables. Transactions of the American Mathematical Society, 27:345–396, July 1925.

    MathSciNet  MATH  Google Scholar 

  17. S. P. Morse. A mathematical model of the analysis on contour-line data. Journal of the Association for Computing Machinery, 15(2):205–220, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of level sets. In M. Gross, K. I. Joy, and R. J. Moorhead, editors, Proc. IEEE Visualization 2002, pages 187–194, Los Alamitos, California, 2002. IEEE Computer Society Press.

    Chapter  Google Scholar 

  19. J. Pfaltz. Surface networks. Geographical Analysis, 8:77–93, 1976.

    Article  Google Scholar 

  20. J. Pfaltz. A graph grammar that describes the set of two-dimensional surface networks. Graph-Grammars and Their Application to Computer Science and Biology. Lecture Notes in Computer Science, vol. 73. Springer, Berlin, 1979.

    Google Scholar 

  21. B. T. Stander and J. C. Hart. Guaranteeing the topology of implicit surface polygonization for interactive modeling. In Proc. of ACM SIGGRPAH 1997, volume 31, pages 279–286, New York, USA, Aug. 1997. ACM Press/ACM SIGGRAPH.

    Google Scholar 

  22. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359–366, Los Alamitos, California, 2000. IEEE Computer Society Press.

    Google Scholar 

  23. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. IEEE Visualization 2001, pages 159–166, Piscataway, NJ, Oct. 2001. IEEE Computer Society Press.

    Google Scholar 

  24. M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In Symposium on Computational Geometry, pages 212–220, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bremer, PT., Pascucci, V., Hamann, B. (2009). Maximizing Adaptivity in Hierarchical Topological Models Using Cancellation Trees. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_1

Download citation

Publish with us

Policies and ethics