Skip to main content

Telescope Structures and Control System

  • Chapter
  • First Online:
Book cover The Principles of Astronomical Telescope Design

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 360))

  • 3098 Accesses

This chapter provides a comprehensive discussion on telescope structural design and analysis. Different telescope mounting designs are discussed in this chapter. Emphasis is placed on the altitude-azimuth mounting system. Formulas for star coordinator transformation and the zenith blend spot determination are provided. Formulas of a Steward platform are also introduced. Detailed information on telescope tube structure, secondary mirror vane structure, bearings, encoders, drive system, and control system design are also discussed. In the encoder part, a number of methods for increasing the encoder resolution are provided. The telescope pointing, tracking, star guiding, and the pointing correction formulas are discussed. In the final part of this chapter, static and dynamic structural analysis, wind and earthquake influence on structure, structure vibration control, and foundation design are all introduced. These contents are also useful for radio or other wavelength telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, T, 1998, A first study of MMA antenna offset performance, ALMA memo, 231, National Radio Astronomy Observatory, US.

    Google Scholar 

  • Arya, S., O’Neill, M. and Pincus, G., 1984, Design of structures and foundations for vibrating machines, Gulf Publishing Co., Houston, Texas.

    Google Scholar 

  • Avitabile, A., 2001, Experimental modal analysis, Sound Vibration, 35 (1), 20–31.

    Google Scholar 

  • Bely, P. Y., 2003, The design and construction of large optical telescopes, Springer, New York.

    Google Scholar 

  • Borkowski, K. M., 1987, Near zenith tracking limits for altitude-azimuth telescopes, Vol. 37. Acta Astronomica, Poland, 79–88.

    Google Scholar 

  • Brunetto, E., et al., 2004, OWL, opto-mechanics, phase A, Proc. SPIE 5489, 571–582.

    Google Scholar 

  • Chatfield, C., 1996, The analysis of time series, an introduction, 5th edn. Chapman & Hall/CRC, London.

    MATH  Google Scholar 

  • Cheng, J., 1987, Pointing error correction for 3.8 m United Kingdom Infrared Telescope, Vol. 28, No. 3. Acta Astronomia Sinica, Nanjing, China.

    Google Scholar 

  • Cheng, J., 1994, Damping and vibration control, ALMA memo 125, National Radio Astronomy Observatory, Charlottesville.

    Google Scholar 

  • Cheng, J., 2006, The principles and applications of magnetism, Chinese Science and Technology Press, Beijing, China, in Chinese.

    Google Scholar 

  • Cheng, J. and Li, G., 1988, Mechanical properties of crossed-vane type supporting structure, Astronomical Instrument and Technology, No. 1, p 5–10, Nanjing, China.

    Google Scholar 

  • Cheng, J. and Xu, X., 1986, Some problems of alt-azimuth mounting telescopes, Progress in Astronomy, Vol. 4, No. 4, 322–337, Shanghai, China.

    Google Scholar 

  • Crassidis, J. L. and Junkins, J. L., 2004, Optimal estimation of dynamic system, Chapman & Hall/CRC, London.

    Book  Google Scholar 

  • Davenport, A. G., 1961, The spectrum of horizontal gustiness near the ground in high winds, Quart. J. R. Meteorol. Soc., 87, 194.

    Google Scholar 

  • Dyrbye, D. and Hansen, S. O., 1996, Wind loads on structure, John Wiley & Sons, New York.

    Google Scholar 

  • Eaton, J. A., 2000, Report on application of hydrostatic bearings to the azimuth axis of the TSU 2 m telescope, Tennesse State University.

    Google Scholar 

  • Forbes, F. and Gaber, G., 1982, Wind loading of large astronomical telescopes, SPIE, 332, 198–205.

    ADS  Google Scholar 

  • Gawronski, W., 2007, Control and pointing challenges of large antennas and telescopes. IEEE Trans. Control Syst. Technol., 15, 276.

    Article  Google Scholar 

  • Gawronski, W. and Souccar, K., 2003, Control systems of the Large Millimeter Telescope, IPN Progress Report 42-154, JPL, NASA.

    Google Scholar 

  • Haojian, Y., 1996, A new expression for astronomical refraction, Astro. J., 112, 1312.

    Article  Google Scholar 

  • Hu, Q., 2007, General design of astronomical telescopes, Nanjing Institute of Astronomical Optical Technology.

    Google Scholar 

  • Ieki, A., et al., 1999, Optical encoder using a slit-width-modulated grating, J. Modern Opt., 46 (1), 1–14.

    Article  ADS  Google Scholar 

  • Juvinall, R. C. and Marchek, K. M., 1991, Fundamentals of machine component design, John Wiley & Sons, New York.

    Google Scholar 

  • Koch, F., 1997, Analysis concepts for large telescope structures under earthquake load, SPIE, 2871, 117.

    ADS  Google Scholar 

  • Koch, F., 2008, private communication.

    Google Scholar 

  • Korenev, B. G. and Reznikov, L. M., 1993, Dynamic vibration absorbers, John Wiley & Sons, New York.

    Google Scholar 

  • Mangum, J. G., 2001, A telescope pointing algorithm for ALMA, ALMA memo 366, National Radio Astronomy Observatory, Charlottesville.

    Google Scholar 

  • Mangum, J. G., 2005, ALMA notes, NRAO, Charlottesville.

    Google Scholar 

  • Parks, R. E. and Honeycutt, K., 1998, Novel Kinematic equatorial primary mirror mount, SPIE 3352, 537–543.

    Google Scholar 

  • Richter, C. F., 1958, Elementary seismology, Freeman, San Francisco.

    Google Scholar 

  • Sarioglu, M. and Yavuz, T., 2000, Vortex shedding from circular and rectangular cylinders placed horizontally in a turbulent flow, Tur. J. Eng. Environ. Sci., 24, 217–228.

    Google Scholar 

  • Schneermann, M. W., 1986, Structural design concepts for the 8 meter unit telescopes of the ESO-VLT, SPIE Proc., 628, 412.

    Article  ADS  Google Scholar 

  • Shi, X. and Fenton, R. G., 1992, Solution to the forward instantaneous kinematics for a general 6-dof Stewart platform, Mech. Mach. Theory, 27 .(3), 251–259.

    Article  Google Scholar 

  • Simiu, E. 1974, Wind spectra and dynamic alongwind response, J. Struct. Div., ASCE, 1897, ST_9.

    Google Scholar 

  • Simiu, E. and Scanlan H., 1986, Wind effects on structure, John Wiley & Sons, New York.

    Google Scholar 

  • Stewart, D., 1966, A platform with six degrees of freedom, Proc. Inst. Mech. Eng., 180 (15), Part 1, 371.

    Google Scholar 

  • Tedesco, J. W., et al., 1999, Structural dynamics, theory and applications, Addison-Wesley, Montlo Park, California.

    Google Scholar 

  • Wallace, P. T., 2000, Manual of TPOINT software, TPOINT Software, Abingdon.

    Google Scholar 

  • Watson, F. G., 1978, The zenithal blind spot of a computer-controlled alt-azimuth telescope, MNRAS, 183, 277–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, J. (2009). Telescope Structures and Control System. In: The Principles of Astronomical Telescope Design. Astrophysics and Space Science Library, vol 360. Springer, New York, NY. https://doi.org/10.1007/b105475_3

Download citation

Publish with us

Policies and ethics