Skip to main content

Byproducts from Zymomonas mobilis

  • Chapter
  • First Online:
Bioreactor Systems and Effects

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 44))

Abstract

Z. mobilis is a microorganism that is not only an extremely efficient producer of alcohol, but also is capable of producing other metabolites in high concentrations under the correct culture conditions. The technology exists to manufacture fructose, sorbitol and gluconic acid at high yields and rates; all three are valuable chemicals. Levan and fructooligosaccharides represent further metabolites of interest, although the optimal conditions required for their formation are still unclear and their usefulness is yet to be fully established. Furthermore, several enzymes have a potential market and could be extracted from waste cell material using established affinity chromatography methods as byproducts of a Zymomonas process. Other minor byproducts are not produced in sufficient quantity to justify commercial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Adv Biochem Eng 23: 37

    Google Scholar 

  2. Buchholz SE, Dooley MM, Eveleigh DE (1987) Tibtech 5: 199

    Google Scholar 

  3. Viikari L (1988) CRC Crit Rev in Biotechnol 7: 237

    Google Scholar 

  4. Bringer-Meyer S, Sahm H (1988) FEMS Microbiol Rev 54: 131

    Google Scholar 

  5. Viikari L, Korhola M (1986) Appl Microbiol Biotechnol 24: 471

    Google Scholar 

  6. Toran-Diaz I, Jain VK, Baratti JC (1984) Biotechnol Letts 6: 389

    Google Scholar 

  7. Toran-Diaz I, Delezon C, Baratti JC (1983) Biotechnol Letts 5: 409

    Google Scholar 

  8. Doelle HW, Greenfield PF (1985) Appl Microbiol Biotechnol 22: 405

    Google Scholar 

  9. Doelle MB, Doelle, HW (1989) J Biotechnol 11: 25

    Google Scholar 

  10. Favela Torres E, Baratti J (1987) Appl Microbiol Biotechnol 27: 121

    Google Scholar 

  11. Viikari L, Linko M (1986) Biotech Letts 8: 139

    Google Scholar 

  12. Viikari L (1984) Appl Microbiol Biotechnol 19: 252

    Google Scholar 

  13. Viikari L, Gisler R (1986) Appl Microbiol Biotechnol 23: 240

    Google Scholar 

  14. Lyness E, Doelle HW (1981) Biotech Bioeng 23: 1449

    Google Scholar 

  15. Schenberg AC, Pinto Da Costa SO (1987) CRC Crit Rev Biotechnol 6: 323

    Google Scholar 

  16. Doelle MB, Doelle HW (1989) Aust J Biotechnol 3: 218

    Google Scholar 

  17. Doelle MB, Doelle HW (1990) Appl Microbiol Biotechnol 33: 31

    Google Scholar 

  18. Doelle MB, Greenfield PF, Doelle HW (1990) Process Biochem Intl. 25: 151

    Google Scholar 

  19. Doelle MB, Greenfield PF, Doelle HW (1990) Appl Microbiol Biotechnol 34: 160

    Google Scholar 

  20. Doelle MB, Millichip RJ, Doelle HW (1989) Process Biochem 24: 137

    Google Scholar 

  21. Millichip RJ, Doelle HW (1989) Process Biochem 24: 141

    Google Scholar 

  22. Doelle HW (1982) Eur J Appl Microbiol Biotechnol 14: 241

    Google Scholar 

  23. Wecker MSA, Zall RR (1987) Appl Environ Microbiol 53: 2815

    Google Scholar 

  24. Schmidt W, Schürgerl K (1987) The Chem Eng J 36: B39

    Google Scholar 

  25. Jobses IML, Egberts GTC, van Baalen A, Roels JA (1985) Biotech Bioeng 27: 984

    Google Scholar 

  26. Bringer-Meyer S, Scollar M, Sahm H (1985) Appl Microbiol Biotechnol 23: 134

    Google Scholar 

  27. Pankova LM, Shvinka JE, Beker MJ (1988) Appl Microbiol Biotechnol 28: 583

    Google Scholar 

  28. Rao SC, Jones LP (1987) Acta Biotechnol 7: 209

    Google Scholar 

  29. Bevers J, Verachtert H (1976) J Inst Brew London 82: 35

    Google Scholar 

  30. Zachariou M, Scopes RK (1986) J Bacteriol 167: 863

    Google Scholar 

  31. Oura E (1977) Proc Biochem 12: 19

    Google Scholar 

  32. Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1987) General microbiology, 5th edn, MacMillan, New York USA

    Google Scholar 

  33. Radler F (1986) Experientia 42: 884

    Google Scholar 

  34. Swings J, De Ley J (1977) Bacteriol Rev 41: 1

    Google Scholar 

  35. Lord RC, Barry RD, Fry J (1989) Sugar and sweetener situation and outlook report USDA-ERS

    Google Scholar 

  36. Hodgkin JA (1987) Sugar y Azucar 82(8): 15

    Google Scholar 

  37. Hamilton BK, Colton CK, Cooney CL (1974) In: Olson AC, Cooney CL (eds) Immobilised Enzymes in Food and Microbial Processes, Plenum, NY, p 85

    Google Scholar 

  38. Blanchard PH, Geiger EO (1984) Sugar Technol. Rev. 11: 1

    Google Scholar 

  39. Bucke C (1981) In: Birch GG, Blakeborough N, Parker KJ (eds) Enzymes and food processing, Applied Sci Pub, London p 51

    Google Scholar 

  40. Vandamme EJ, Derycke DG (1983) Adv Appl Microbiol 29: 139

    Google Scholar 

  41. Jensen VJ, Rugh S (1987) Methods in Enzymol 136: 356

    Google Scholar 

  42. Visuri K, Klibanov AM (1987) Biotech Bioeng 30: 917

    Google Scholar 

  43. Kosaric N, Wieczorek A, Cosentino GP, Duvnjak Z (1985) Adv Biochem Eng 32: 1

    Google Scholar 

  44. Fleming SE, Grootwassink JWD (1979) CRC Crit Rev Food Sci Nutr 12: 1

    Google Scholar 

  45. Fuchs A (1987) Starch 39: 335

    Google Scholar 

  46. Boehringer CF & Sons (1967) UK Pat 1,085,696

    Google Scholar 

  47. Boehringer CF & Sons (1968) UK Pat 1,117,903

    Google Scholar 

  48. Keller BW, Reents AC, Laraway JW (1981) Starch 33: 55

    Google Scholar 

  49. Holstein AG, Holsing GC (1962) US Pat 3,050,444

    Google Scholar 

  50. Niedleman SL, Amon WF, Geigert J (1981) US Pat 4,246,347

    Google Scholar 

  51. Heady RE (1981) US Pat 4,276,379

    Google Scholar 

  52. Ueng PP, McCracken LD, Gong CS, Tsao GT (1982) Biotechnol Lett 4: 353

    Google Scholar 

  53. Bell JM, Erfle JD, Spencer JFT, Reusser F (1958) Can J Animal Sci 38: 122

    Google Scholar 

  54. Duvnjak Z, Koren DW (1987) Biotechnol Lett 9: 783

    Google Scholar 

  55. Heady RE (1982) US Pat 4,335,207

    Google Scholar 

  56. Lyness E, Doelle HW (1983) Biotechnol Lett 5: 345

    Google Scholar 

  57. Mortatte MPL, Sato HH, Park YH (1983) Biotechnol Lett 5: 229

    Google Scholar 

  58. Preziosi L, Michel GPF, and Baratti J (1990) Arch. Microbiol 153: 181

    Google Scholar 

  59. Di Marco AA, Romano AH (1985) Appl Environ Microbiol 49: 151

    Google Scholar 

  60. Doelle HW (1982) Eur J Appl Microbiol Biotechnol 15: 20

    Google Scholar 

  61. Edye LA, Kositanont C, Doelle HW (1990) Acta Biotechnol 1: 49

    Google Scholar 

  62. Edye LA, Johns MR, Ewings KN (1989) Appl Microbiol Biotechnol 31: 129

    Google Scholar 

  63. Cromie S, Doelle HW (1982) Eur J Appl Microbiol Biotechnol 14: 69

    Google Scholar 

  64. Doelle HW, Greenfield PF (1985) Appl Microbiol Biotechnol 22: 411

    Google Scholar 

  65. Rogers PL, Lee KJ, Tribe DE (1980) Process Biochem 15: 7

    Google Scholar 

  66. Johns MR, Greenfield PF (1988) Aust Inst Food Sci & Technol Convention, Manly, p 36

    Google Scholar 

  67. Forster H, Mehnert H (1979) Akt Ernahrung 5: 245

    Google Scholar 

  68. Suntinanalert P, Pemberton JP, Doelle HW (1986) Biotechnol Lett 8: 351

    Google Scholar 

  69. Kositanont C, Edye LA, Doelle HW (1990) Microbios 61: 169

    Google Scholar 

  70. Lawford H, Holloway P, Ruggiero A (1988) Biotechnol Lett 10: 809

    Google Scholar 

  71. Kositanont C, Edye L, Doelle HW (1989) Proc 8th Aust Biotechnol Conf Sydney, p 247

    Google Scholar 

  72. Forsberg KH, Hamalainen L, Melaga AJ, Virtanen JJ (1975) US Pat 3,883,365

    Google Scholar 

  73. Shiau LD, Berglund KA (1987) AIChEJ 33: 1028

    Google Scholar 

  74. Dwivedi BK, Raniwala SK (1980) US Pat 4,199,374

    Google Scholar 

  75. Day GA (1985) Eur Pat 156,571

    Google Scholar 

  76. Lauer VK (1980) Starch 32: 11

    Google Scholar 

  77. Bates FJ & Assoc (1942) Natl Bur Std (US) Cire C-440

    Google Scholar 

  78. Burgess S (1987) Manufact Chemist 58(6): 55

    Google Scholar 

  79. Rapaille A (1988) Starch 40: 356

    Google Scholar 

  80. Koch H, Roper H (1988) Starch 40: 121

    Google Scholar 

  81. Rogers PL, Chun UH (1987) Aust J Biotechnol 1: 51

    Google Scholar 

  82. Roper H, Koch H (1988) Starch 40: 453

    Google Scholar 

  83. Viikari L (1984) Appl Microbiol Biotechnol 20: 118

    Google Scholar 

  84. Chun UH, Rogers PL (1988) Appl Microbiol Biotechnol 29: 19

    Google Scholar 

  85. Hardmann MJ, Scopes RK (1988) Eur J Biochem 173: 203

    Google Scholar 

  86. Barrow KD, Collin JG, Leigh DA, Rogers PL, Warr RG (1984) Appl Microbiol Biotechnol 20: 225

    Google Scholar 

  87. Leigh D, Scopes RK, Rogers PL (1984) Appl Microbiol Biotechnol 20: 413

    Google Scholar 

  88. Strohdeicher M, Schmitz B, Bringer-Meyer S, Sahm H (1988) Appl Microbiol Biotechnol 27: 378

    Google Scholar 

  89. Amin G, Doelle HW, Greenfield PF (1987) Biotechnol Letts 9: 225

    Google Scholar 

  90. Favela Torres E, Baratti J (1987) Biomass 13: 75

    Google Scholar 

  91. Bringer-Meyer S, Sahm H (1987) Australian Pat 61 085/86

    Google Scholar 

  92. Paterson SL, Fane AG, Fell CJD, Chun UH, Rogers PL (1988) Biocatalysis 1: 217

    Google Scholar 

  93. Unisearch (1988) US pat 4,755,467, 6pp

    Google Scholar 

  94. Kennedy JF, Stevenson DL, White CA, Viikari L (1989) Carbohydr Polym 10: 103

    Google Scholar 

  95. Dawes EA, Ribbons DW, Rees DA (1966) Biochem J 98: 804

    Google Scholar 

  96. Reiss M, Hartmeier W (1989) Chem Mikrobiol Technol Lebensm 12: 1

    Google Scholar 

  97. Mezbarde I, Pankova LM, Laivenieks M, Svinka J, Bekere M (1989) Latv PSR Zinat Akad Vestis (4) 130

    Google Scholar 

  98. Lyness E, Doelle HW (1980) Biotechnol Lett 2: 249

    Google Scholar 

  99. Lee KJ, Skotnicki ML, Tribe DE, Rogers PL (1981) Biotechnol Lett 3: 207

    Google Scholar 

  100. Gonzales R, Johns MR, Greenfield PF, Pace GW (1989) Process Biochem 24: 200

    Google Scholar 

  101. Hidaka H, Eida T (1984) BioIndustry 1: 5

    Google Scholar 

  102. Muramatsu M, Kainuma S, Miwa T, Nakakuki T (1988) Agr Biol Chem 52: 1303

    Google Scholar 

  103. Fishbein L, Kaplan M, Gough M (1988) Vet Hum Toxicol 30: 104

    Google Scholar 

  104. McKellar RC, Midler HW (1989) Appl Microbiol Biotechnol 31: 537

    Google Scholar 

  105. Scopes RK (1987) Aust J Biotechnol 1: 58

    Google Scholar 

  106. Algar EM, Scopes RK (1985) J Biotechnol 2: 275

    Google Scholar 

  107. Osman YA, Conway T, Bonetti SJ, Ingram LO (1987) J Bacteriol 169: 3726

    Google Scholar 

  108. Scopes RK, Testolin V, Stoter A, Griffiths-Smith K, Algar EM (1985) Biochem J 228: 627

    Google Scholar 

  109. Dawes EA, Ribbons DW, Large PJ (1966) Biochem J 98: 795

    Google Scholar 

  110. Pawluk A, Scopes RK, Griffiths-Smith K (1986) Biochem J 238: 275

    Google Scholar 

  111. Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987) J Bacteriol 169: 949

    Google Scholar 

  112. Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ (1987) J Bacteriol 169: 1024

    Google Scholar 

  113. Brau B, Sahm H (1986) Arch Microbiol 144: 296

    Google Scholar 

  114. Reynen M, Sahm H (1988) J Bacteriol 170: 3310

    Google Scholar 

  115. Neale AD, Scopes RK, Kelly JM (1988) Appl Microbiol Biotechnol 29: 162

    Google Scholar 

  116. Ingram LO, Conway T (1988) Appl Environ Microbiol 54: 397

    Google Scholar 

  117. Feldmann S, Sprenger GA, Sahm H (1989) Appl Microbiol Biotechnol 31: 152

    Google Scholar 

  118. Michel GPF, Baratti JC (1989) J Gen Microbiol 135: 453

    Google Scholar 

  119. Conway T, Eddy CK, MacKenzie KF, Mejia JP, Pond JL, Utt EA (1988) ASM Ann Meet Abstr

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Johns, M.R., Greenfield, P.F., Doelle, H.W. (1991). Byproducts from Zymomonas mobilis . In: Bioreactor Systems and Effects. Advances in Biochemical Engineering/Biotechnology, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/Bfb0000749

Download citation

  • DOI: https://doi.org/10.1007/Bfb0000749

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54094-6

  • Online ISBN: 978-3-540-47400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics