Skip to main content

Membrane bioreactors: Present and prospects

  • Chapter
  • First Online:
Bioreactor Systems and Effects

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 44))

Abstract

Membrane bioreactors have a very handy in-situ separation capability lacking in other types of bioreactors. Combining various functions of membrane separations and biocatalyst characteristics of enzymes, microbial cells, organelles, animal and plant tissues can generate quite a number of membrane bioreactor systems. The cell retaining property of membranes and selective removal of inhibitory byproducts makes high cell density culture possible and utilizes enzyme catalytic activity better, which leads to high productivity of bioreactors. Enzyme reactions utilizing cofactors and hydrolysis of macromolecules are advantageous in membrane bioreactors. Anaerobic cell culture may be efficiently carried out in membrane cell recycle systems, while aerobic cultures work well in dual hollow fiber reactors. Animal and plant cells have much a better chance of success in membrane reactors because of the protective environment of the reactor and the small oxygen uptake rate of these cells. Industrial use of these reactors are still in its infancy and limited to enzyme and animal tissue culture, but applications will expand as existing problems are resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallup DM, Gerhardt P (1963) Appl Microbiol 11: 506

    Google Scholar 

  2. Chang TMS (1964) Science 146: 524

    Google Scholar 

  3. Butterworth TA, Wang DIC, Sinskey AJ (1970) Biotechnol Bioeng 12: 615

    Google Scholar 

  4. Knazek RA, Gullimo PM, Kohler PO, Dedrick RL (1972) Science 178: 655

    Google Scholar 

  5. Kitano H, Ise N (1984) Trends in Biotech 2: 5

    Google Scholar 

  6. Gekas VC (1986) Enz Microb Tech 8: 450

    Google Scholar 

  7. Vick Roy TB, Blanch HW, Wilke CR (1983) Trends in Biotech 1: 135

    Google Scholar 

  8. Hopkinson J (1983) Hollow fiber cell culture in industry. In: Mattiasson B (ed) Immobilized cells and organelles, vol I, CRC, Boca Raton, FL, p 89

    Google Scholar 

  9. Belfort G (1989) Biotechnol Bioeng 33: 1047

    Google Scholar 

  10. Karel SF, Libicki SB, Robertson CR (1985) Chem Eng Sci 40: 1321

    Google Scholar 

  11. Furusaki S (1988) J Chem Eng Japan 21: 219

    Google Scholar 

  12. Chang HN (1987) Biotech Adv 5: 129

    Google Scholar 

  13. Eisenman G (1972), Membranes vol 1 Macroscopic systems and models. Marcel Dekker, New York, p 3

    Google Scholar 

  14. Atkinson B, Mavituna F (1983) Biochemical and biotechnology handbook. McMillan, Surrey, England, p 933

    Google Scholar 

  15. Kesting RE (1985) Synthetic polymeric Membranes, 2nd ed John Wiley, New York

    Google Scholar 

  16. Belfort G (1988) J Membrane Sci 35: 245

    Google Scholar 

  17. Chang HN, Park JK (1986) Effect of turbulence promoters in mass transfer In: Cheremisnoff NP (ed) Handbook of heat and mass transfer operations vol II, Gulf Publishing, USA, p 3

    Google Scholar 

  18. Park JK, Chang HN (1986) AIChE J 32: 1937

    Google Scholar 

  19. Lightfoot EN (1974) Transport phenomena and living systems, John Wiley, New York p 99

    Google Scholar 

  20. Waterland LW, Robertson CR, Michaels AS (1975) Chem Eng Comm 2, 37

    Google Scholar 

  21. Kang IS, Chang HN (1982) Int J Heat Mass Transfer 25: 1167

    Google Scholar 

  22. Kim DH, Chang HN (1983) Int J Heat Mass Transfer 26: 1007

    Google Scholar 

  23. Kim WS, Park JK, Chang HN (1987) Int J Heat Mass Transfer 30: 1183

    Google Scholar 

  24. Lee YL, Chang HN (1987) J Korean Inst Chem Engr 26: 97

    Google Scholar 

  25. Gabler FR (1985) In: Moo-Young M (ed) Comprehensive biotechnology vol II Pergamon Press, Oxford 111, p 351

    Google Scholar 

  26. Furusaki S, Kojima T, Miyauchi T (1977) J Chem Eng Japan 10: 233

    Google Scholar 

  27. Kim IH, Chang HN (1983) AIChE J 29: 645

    Google Scholar 

  28. Kim IH, Chang HN (1983) AIChE J 29: 910

    Google Scholar 

  29. Park TH, Kim IH, Chang HN (1985) Biotechnol Bioeng 27: 1185

    Google Scholar 

  30. Chang HN, Chung BH, Kim IH (1986) In: Asenjo JA, Hong J (eds) Separation, recovery and purification in biotechnology: Recent advances and mathematical modeling, ACS Symposium Series 314: 32

    Google Scholar 

  31. Smith WJ, Salmon PM, Robertson CR (1988) ACS 196th meeting, MBTD paper 44

    Google Scholar 

  32. Chang HN, Kyung YS, Chung BH (1987) Biotechnol Bioeng 29: 552

    Google Scholar 

  33. Chang HN, Chung BH (1987) Korean J Chem Eng 5: 83

    Google Scholar 

  34. Uttapap D, Koba Y, Ishizaki A (1989) Biotechnol Bioeng 33: 542

    Google Scholar 

  35. Darnoko D, Cherylan M, Artz WE (1989) Enz Microb Technol 11: 154

    Google Scholar 

  36. Hong J, Tsao GT, Wankat PC (1981) Biotechnol Bioeng 23: 1501

    Google Scholar 

  37. Pizzichini M, Fabiani C, Adami A, Cavazzoni V (1989) Biotechnol Bioeng 33: 955

    Google Scholar 

  38. Deeslie WD, Cherylan M (1982) Biotechnol Bioeng 23: 2257

    Google Scholar 

  39. Deeslie WD, Cherylan M (1982) Biotechnol Bioeng 24: 69

    Google Scholar 

  40. Bressollier Ph, Petit JM, Julien R (1988) Biotechnol Bioeng 31: 650

    Google Scholar 

  41. Kroner KH, Nissinen V, Ziegler H (1989) Bio/Technology 5: 921

    Google Scholar 

  42. Horvath C, Solomon BA (1972) Biotechnol Bioeng 14: 885

    Google Scholar 

  43. Drioli E, Gianfreda L, Palescandol R, Scardi V (1975) Biotechnol Bioeng 17: 1365

    Google Scholar 

  44. Kawakami K, Harada T, Kusunoki K (1980) Enz Microb Technol 2: 295

    Google Scholar 

  45. Wichmann R, Wandrey C, Buckmann AF, Kula M-R (1981) Biotechnol Bioeng 23: 2789

    Google Scholar 

  46. Berke W, Schulz H-J, Wandrey C, Morr M, Denda G, Kula M-R (1988) Biotechnol Bioeng 32: 130

    Google Scholar 

  47. Ishikawa H, Takase S, Tanaka T, Hikita H (1989) Biotechnol Bioeng 34: 369

    Google Scholar 

  48. Miyawaki O, Nakamura K, Yano T (1982) J Chem Eng Japan 15: 224

    Google Scholar 

  49. Chang HN, Moo-Young M (1988) Appl Microb Biotechnol 29: 107

    Google Scholar 

  50. Chang HN, Joo IS, Ghim YS (1984) Biotechnol Lett 6: 487

    Google Scholar 

  51. Hoq MM, Yamane T, Shimizu S, Funata T, Ishida S (1984) JOACS 61: 776

    Google Scholar 

  52. Pronk W, Kerkhof PJAM, van Helden C, van't Riet K (1988) Biotechnol Bioeng 32, 512

    Google Scholar 

  53. Bratzler RL (1987) In: Biotransformation, The World Biotech Report vol 1, part 5, p 23

    Google Scholar 

  54. Ishikawa H, Kurose K, Oogaito M, Hikita H (1989) J Chem Eng Japan 22: 18

    Google Scholar 

  55. Shimazaki K (1987) In: Current chemical engineering (Bioreactors accompanying separation) vol 39, p 16

    Google Scholar 

  56. Imai K, Shiomi T, Uchida K, Miya M (1986) Biotechnol Bioeng 28: 198

    Google Scholar 

  57. Shiomi T, Tohyama M, Satoh M, Miya M, Imai K (1988) Biotechnol Bioeng 32: 664

    Google Scholar 

  58. Imai K, Shiomi T, Uchida K, Miya M (1986) Biotechnol Bioeng 28: 1721

    Google Scholar 

  59. Furusaki S, Nozawa T, Nomura S (1990) Bioprocess Eng 5: 73

    Google Scholar 

  60. Lee CK, Hong J (1988) Biotechnol Bioeng 32: 647

    Google Scholar 

  61. Kunugi S, Kodama H, Yamada H, Nakamura Y (1985) Sen'i Gakkaishi 41: T355

    Google Scholar 

  62. Ichijo H, Suehiro T, Nagasawa J, Yamauchi A, Sugesaka M (1985) Biotechnol Bioeng 27: 1077

    Google Scholar 

  63. Gianfreda L, Domenico P, Greco Jr G (1989) Biotechnol Bioeng 33: 1067

    Google Scholar 

  64. Chung BH, Chang HN, Koh YH (1987) J Ferment Tech 65: 575

    Google Scholar 

  65. Hwang JS, Chang HN (1987) Biotechnol Lett 9: 237

    Google Scholar 

  66. Leuchtenberger W, Karrenbauer M, Plocker U (1983) Enzyme Engineering 7, Annals of NY Acad Sci 434: 78

    Google Scholar 

  67. Tanigaki M, Sakata M, Wada H (1987) In: Bioreactors functioning separation, Soc Chem Japan (Latest Chemical Eng) 39: 33

    Google Scholar 

  68. Hibino T (1987) In: Bioreactors functioning separation, Soc Chem Eng Japan (Latest Chemical Eng) 39: 33

    Google Scholar 

  69. Hawashida M, Kise S, Ikemi M, Koizumi S (1988) In: Biotechnology (Prep Sixth Symp Fundam Technol for Next Generation) p 155

    Google Scholar 

  70. Wang HY, Kominet LA, Jost JL (1981) In: Moo-Young et al (eds), Advances in biotechnology vol I, Pergamon Press, Oxford, p 601

    Google Scholar 

  71. Schultz JS, Gerhardt P (1969) Bacterial Rev Mar p 1

    Google Scholar 

  72. Matsumura M, Markl H (1986) Biotechnol Bioeng 28: 534

    Google Scholar 

  73. Matsumoto K, Ohya H, Daigo M (1985) Membrane 10: 305

    Google Scholar 

  74. Matsumoto, Ohya H (1986) World 3 Cong Chem Eng Sept 21–25, p 843

    Google Scholar 

  75. Nakao S, Saitoh F, Asakura T, Toda K, Kimura S (1987) J Memb Sci 30: 273

    Google Scholar 

  76. Udriot H, Ampuero S, Marison IW, von Stokar U (1989) Biotech Lett 11: 509

    Google Scholar 

  77. Vick Roy TB, Blanch HW, Wilke CR (1982) Biotech Lett 4 (8): 483

    Google Scholar 

  78. Inloes DS, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Appl Environ Microbiol 46: 264

    Google Scholar 

  79. Mehaia MA, Cherylan M (1984) Appl Microbiol Biotechnol 20: 100

    Google Scholar 

  80. Mehaia MA, Cherylan M (1984) Enz Microbiol Technol 6: 117

    Google Scholar 

  81. Park TH, Kim IH (1985) Appl Microbiol Biotechnol 22: 190

    Google Scholar 

  82. Ooshima H, Dono N, Harano Y (1987) Prep 52nd Annual Meeting Soc Chem Japan, Nagoya p 348

    Google Scholar 

  83. Jee HS, Nishio N, Nagai S (1988) Biotech Lett 10: 243

    Google Scholar 

  84. Mattiasson B, Ramstorp M (1981) Biotech Lett 3: 561

    Google Scholar 

  85. Inloes DS, Smith WJ, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Biotechnol Bioeng 25: 2653

    Google Scholar 

  86. Nanba, Kimura K, Nagai S (1985) J Ferment Technol 63: 175

    Google Scholar 

  87. Robertson CR, Kim IH (1985) Biotechnol Bioeng 27: 1012

    Google Scholar 

  88. Chang HN, Chung BH, Kim IH (1986) In: Asenjo JA, Hong J (eds) Recent advances in purification and mathematical modelling, ACS Symposium Series 314, 32–42

    Google Scholar 

  89. Chung BH, Chang HN (1988) Biotechnol Bioeng 32: 205

    Google Scholar 

  90. Kristiansen B, Sinclair CG (1978) Biotechnol Bioeng 20: 1711

    Google Scholar 

  91. Anderson JG, Blain JA, Divers M, Todd JR (1980) Biotechnol Lett 2: 99

    Google Scholar 

  92. Vaija J, Linko YY, Linko P (1982) Appl Biochem Biotechnol 7: 51

    Google Scholar 

  93. Eikmeier H, Rehm HJ (1984) Appl Microbiol Biotechnol 20: 365

    Google Scholar 

  94. Horitsu H, Adachi S, Takahashi Y, Kawai K, Kawano Y (1985) Appl Microbiol Biotechnol 22: 8

    Google Scholar 

  95. Tsay SS, To KY (1987) Biotechnol Bioeng 29: 297

    Google Scholar 

  96. Chung BH, Chang HN, Kim IH (1987) Enz Microbiol Tech 9: 345

    Google Scholar 

  97. Hwang YB, Chung BH, Chang HN, Han MH (1988) Bioprocess Eng 3: 159

    Google Scholar 

  98. Chung BH, Chang HN (1985) Korean J Appl Microb Bioeng 13: 209

    Google Scholar 

  99. Chung BH, Cho DC, Chang HN (1987) Korean J Appl Microb Bioeng 15: 49

    Google Scholar 

  100. Herbert D (1961) Society of Chemistry and Industry Monograph No 12, London, p 21

    Google Scholar 

  101. Pirt SJ, Kuroski WM (1970) J Gen Microbiol 63: 357

    Google Scholar 

  102. Margaritis A, Wilke CR (1978) Biotechnol Bioeng 20: 727

    Google Scholar 

  103. Rogers PL, Lee KJ, Tribe DE (1980) Process Biochem 15: 7

    Google Scholar 

  104. Nishizawa Y, Mitani Y, Tamai M, Nagai S (1983) J Ferment Technol 61: 599

    Google Scholar 

  105. Nishizawa Y, Mitani Y, Tamai M, Nagai S (1983) J Ferment Technol 61: 599

    Google Scholar 

  106. Nishizawa Y, Mitani Y, Fukunishi K, Nagai S (1984) J Ferment Technol 62: 41

    Google Scholar 

  107. Cherylan M, Mehaia MA (1984) Process Biochem December 204

    Google Scholar 

  108. Kyung KH, Gerhardt P (1984) Biotechnol Bioeng 26: 252

    Google Scholar 

  109. Lee CW, Chang HN (1987) Biotechnol Bioeng 29: 1105

    Google Scholar 

  110. Janssens JH, Bernard A, Bailey RB (1984) Biotechnol Bioeng 26: 1

    Google Scholar 

  111. Chung IS, Lee YY (1986) Biotechnol Bioeng Symp 15: 249

    Google Scholar 

  112. Vick Roy TB, Mandel DK, Dea DK, Blanch HW, Wilke CR (1983) Biotechnol Lett 5: 665

    Google Scholar 

  113. Kobayashi T, Minami T (1988) Kemikaru Enjiniaringu 33: 965

    Google Scholar 

  114. Tachigawa S, Seike Y, Inaba H, Nagamune T, Endo I (1988) Kemikaru Enginiaringu 33: 970

    Google Scholar 

  115. Taniguchi M, Kotani N, Kobayashi T (1987) J Ferment Technol 65: 179

    Google Scholar 

  116. Taniguchi M, Hoshino K, Shimizu K, Nakagawa I, Takahashi Y, Fujii M (1988) J Ferment Technol 66: 633

    Google Scholar 

  117. Wang E, Hatanaka H, Iijima S, Takebayashi T, Shimizu K, Matsubara M, Kobayashi T (1988) J Chem Eng Japan 21: 36

    Google Scholar 

  118. Pierrot P, Fick M, Engasser JM (1986) Biotechnol Lett 8: 253

    Google Scholar 

  119. Schlote D, Gottschalk G (1986) Appl Microb Biotechnol 24: 1

    Google Scholar 

  120. Afscheu AS, Biebl H, Schaller K, Schügerl K (1985) Appl Microbiol Biotechnol 22: 394

    Google Scholar 

  121. Holst O, Hansson L, Berg AC, Mattiasson B (1985) Appl Microbiol Biotechnol 23: 10

    Google Scholar 

  122. Enzminger JD, Asenjo JA (1986) Biotechnol Lett 8: 7

    Google Scholar 

  123. Lee CW, Gu MB, Chang HN, (1989) Enz Microb Tech 11: 49

    Google Scholar 

  124. Anderson KW, Grulke E, Gerhardt P (1984) Bio/Technology 2: 891

    Google Scholar 

  125. Lee YL, Chang HN (1990) Biotechnol Bioeng (in press)

    Google Scholar 

  126. Park YS, Ohtake H, Fukaya M, Okumura H, Kawamura Y, Toda K (1989) Biotechnol Bioeng 33: 918

    Google Scholar 

  127. Goma G, Durand G (1988) 8th Int Biotechnol Symp Proc vol 1, p 410

    Google Scholar 

  128. Chittur KK, McIntire LV, Rich RD (1988) Biotechnol Progress 4: 89

    Google Scholar 

  129. Eppenberger RM (1988) J Biotechnol 7: 179

    Google Scholar 

  130. Papoutsakis ET (1988) J Biotechnol 7: 229

    Google Scholar 

  131. Palsson BO (1988) Biotech Lett 10: 625

    Google Scholar 

  132. Randerson DH (1987) Biotech Lett 1: 39

    Google Scholar 

  133. Dodge TC, Hu WS (1987) Biotech Lett 8: 683

    Google Scholar 

  134. Ku K, Kuo MJ, Delente J, Wildi BS, Feder J (1981) Biotechnol Bioeng 23: 79

    Google Scholar 

  135. Strand JM, Quarles JM, McConnel S (1984) Biotechnol Bioeng 26: 503

    Google Scholar 

  136. Strand JM, Quarles JM, McConnel S (1984) Biotechnol Bioeng 26: 508

    Google Scholar 

  137. Tharakan JP, Chau PC (1986) Biotechnol Bioeng 28: 329

    Google Scholar 

  138. Tharakan JP, Chau PC (1986) Biotechnol Bioeng 28: 1064

    Google Scholar 

  139. Tharakan JP, Chau PC (1986) Biotechnol Bioeng 29: 657

    Google Scholar 

  140. Gallager SL, Tharakan JT, Chau PC (1987) Biotechnol Techniq 1: 91

    Google Scholar 

  141. Altshuler GL, Dziewulski DM, Sowek JA, Belfort G (1986) Biotechnol Bioeng 28: 646

    Google Scholar 

  142. Gullino PM, Knazek RA (1979) Methods in Enzymol 58: 178

    Google Scholar 

  143. Klement G, Scheiter W, Katinger HWD (1988) In: Moo-Young (ed), Bioreactor immobilized enzymes and cells, Elsevier Applied Science, London, p 53

    Google Scholar 

  144. Himmelfarb P, Thayer PS, Martin HE (1969) Science 2: 555

    Google Scholar 

  145. Martin N, Brennan A, Denome L, Shaevitz J (1987) Bio/Technol 5: 838

    Google Scholar 

  146. Knazek RA, Kohler PO, Gullimo PM (1974) Experimental Cell Res 84: 251

    Google Scholar 

  147. Wagner R, Lehmann J (1988) Trends in Biotechnol 6: 101

    Google Scholar 

  148. Chang HN, Oh DJ (1988) ACS Los Angeles meeting, MBTD paper 46

    Google Scholar 

  149. Hopkinson J (1985) Bio/Technol 3: 225

    Google Scholar 

  150. Sinskey AJ (1983) Trends in Biotech 1: 534

    Google Scholar 

  151. Tolbert WR (1981) In Vitro 17: 885

    Google Scholar 

  152. Lim F (1984) Biomedical application of microencapsulations, CRC Press, Boca Raton, Florida, p 137

    Google Scholar 

  153. Brodelius P, Mosbach K (1982) J Chem Tech Biotech 32: 330

    Google Scholar 

  154. Prenosil JE, Pedersen H (1983) Enz Microb Tech 5: 323

    Google Scholar 

  155. Rhodes MJC (1985) IN Wiseman A (ed), Topics in enzyme and fermentation biotechnology, vol 10. Ellis Horwood, Chichester, p 51

    Google Scholar 

  156. Kargi F, Rosenberg MZ (1987) Biotech. Progress 3: 1

    Google Scholar 

  157. Panda AK, Mishira S, Bisaria VS, Bhojwani SS (1989) Enz Microb Tech 11: 386

    Google Scholar 

  158. Brodelius P, Deus B, Mosbach K, Zenk MH (1979) FEBS Lett 103: 93

    Google Scholar 

  159. Alfermann A, Schuller AW, Reinhard E (1980) Planta Med 40: 218

    Google Scholar 

  160. Brodelius P, Nilsson K (1980) FEBS Lett 122: 312

    Google Scholar 

  161. Lindsey K, Yeoman MM, Black GM, Mavituna F (1983) FEBS Lett 155: 143

    Google Scholar 

  162. Shuler ML (1981) Ann NY Acad Sci 369: 65

    Google Scholar 

  163. Shuler ML, Sahai OP, Hallsby GA (1983) Ann NY Acad Sci 413: 373

    Google Scholar 

  164. Jose W, Pedersen H, Chin C (1983) Ann NY Acad Sci 413: 409

    Google Scholar 

  165. Hallsby GA, Shuler ML (1986) Biotech Bioeng Symp 17: 741

    Google Scholar 

  166. Shuler ML, Hallsby GA, Pyne JW, Cho T (1986) Ann NY Acad Sci 469: 270

    Google Scholar 

  167. Cho T, Shuler ML (1986) Biotech Progress 2: 53

    Google Scholar 

  168. Kim DJ, Chang HN, Liu JR (1989) Biotech Techniq 3: 139

    Google Scholar 

  169. Shuler ML, Pyne JW, Hallsby GA (1984) JOACS 61: 1724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Chang, H.N., Furusaki, S. (1991). Membrane bioreactors: Present and prospects. In: Bioreactor Systems and Effects. Advances in Biochemical Engineering/Biotechnology, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/Bfb0000747

Download citation

  • DOI: https://doi.org/10.1007/Bfb0000747

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54094-6

  • Online ISBN: 978-3-540-47400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics