Skip to main content

A theoretical model for the determination of the optimal design of a power transportation and distribution system with several voltage levels

  • Chapter
  • First Online:
Applications

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 20))

  • 109 Accesses

Abstract

The paper presents an optinization model for the problem of electricity transportation and distribution. In most of the work in the field the attention is restricted to a single voltage level and the problem is presented as a network capacity expansion model. In this paper we capitalize on notions used in standardization studies of electrical networks to arrive at an optimization model of the global transportation and distribution system. Several voltage levels are considered simultaneously. The system is modeled using aggregate variables such as the density of lines and transformers at each voltage level, the number of neighbouring substations… The aim of the model is to simultaneously determine several important characteristics of the system such as the section and the length of the lines at each voltage level, the rated power of the transformers and their number at each substation. The resulting model is a nonlinear program: more specifically it is first written as an algebraic program which is then transformed to a signomial problem of the order of thirty constraints and variables. The problem is solved using a generalized reduced gradient code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abadie and J. Carpentier, “Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints”, in: R. Fletcher, ed., Optimization (Academic Press, New York, 1969) pp. 37–47.

    Google Scholar 

  2. J. Abadie, “The GRG method for nonlinear programming”, in: H. J. Greenberg, ed., Design and implementation of optimization software (Sijthoff and Noordhoff, Alphen aan den Rijn, 1978) pp. 334–362.

    Google Scholar 

  3. M. Avriel and A. C. Williams, “Complementary geometric programming”, SIAM Journal of Applied Mathematics 19 (1970) 125–141.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Comellini and M. Silvestri, “Statistical determination of load characteristics and their use in network computations”, IEEE C 74 (1974).

    Google Scholar 

  5. P. Doulliez and M. Stubbe, “Recherche de la taille optimale des équipements d’un réseau électrique à plusieurs plans de tension: application à une étude de l’influence du coût des pertes d’énergie”, Communication CIGRE 31 (1980).

    Google Scholar 

  6. R. J. Duffin, E. L. Peterson and C. Zener, Geometric programming (Wiley, New York, 1967).

    MATH  Google Scholar 

  7. R. J. Duffin and E. L. Peterson, “Geometric programming with signomials”, Journal of Optimization Theory and Applications 11 (1973) 3–35.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Juricic, “Estimation des puissances appelées à partir des consommations d’énergie en basse tension”, Revue générale d’Electricité 80(12) (1980) 932–934.

    Google Scholar 

  9. U. G. Knight, Power systems engineering and mathematics (Pergamon Press, Oxford, 1972).

    Google Scholar 

  10. L. S. Lasdon and A. D. Waren, “Generalized reduced gradient software for linearly and nonlinearly constrained problems”, in: H. J. Greenberg, ed., Design and implementation of optimization software (Sijthoff and Noordhoff, alphen aan den Rijn, 1978) pp. 363–396.

    Google Scholar 

  11. U. Passy, “Condensing generalized polynomials”, Journal of Optimization Theory and Applications 9 (1972) 221–237.

    Article  MathSciNet  Google Scholar 

  12. M. J. Rijckaert, “Computational aspects of geometric programming”, in: H.J. Greenberg, ed., Design and implementation of optimization software (Sijthoff and Noordhoff, Alphen aan den Rijn, 1978) pp. 481–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Louis Goffin Jean-Marc Rousseau

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Doulliez, P., Stubbe, M., Smeers, Y. (1982). A theoretical model for the determination of the optimal design of a power transportation and distribution system with several voltage levels. In: Goffin, JL., Rousseau, JM. (eds) Applications. Mathematical Programming Studies, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121227

Download citation

  • DOI: https://doi.org/10.1007/BFb0121227

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00851-1

  • Online ISBN: 978-3-642-00852-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics