Skip to main content

On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 29))

Abstract

The differential calculus for convex, compact-valued multifunctions developed by Tyurin, Banks and Jacobs is used to give an equivalent description in terms of multifunctions of the class of functions which can be represented as the difference of two globally Lipschitzian convex functions. This approach is also used to develop a means of representing piecewise-linear continuous functions as the difference of two piecewise-linear convex functions in finite dimensions. This leads directly to a Minkowski duality theorem for piecewise-linear positively homogeneous continuous functions and equivalence classes of convex compact sets produced by convex compact polyhedrons: every piecewise-linear positively homogeneous continuous function may be uniquely characterized by its quasidifferential (as defined by Demyanov and Rubinov) at zero.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Alexandrov, “On surfaces which may be represented by a difference of convex functions” (in Russian), Izvestiya Akademii Nauk Kazakhskoj SSR, Seriya Fiziko-Matematicheskikh 3 (1949) 3–20.

    Google Scholar 

  2. A.D. Alexandrov, “On surfaces which may be represented by differences of convex functions” (in Russian), Doklady Akademii Nauk SSSR, 72 (1950) 613–616.

    Google Scholar 

  3. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear parameteric optimization (Akademie-Verlag, Berlin, 1982).

    Google Scholar 

  4. H.T. Banks and M.Q. Jacobs, “A differential calculus for multifunctions”, Journal of Mathematical Analysis and Applications 29 (1970) 246–272.

    Article  MATH  MathSciNet  Google Scholar 

  5. F.H. Clarke, “Generalized gradients and applications”, Transactions of the American Mathematical Society 205 (1975) 247–262.

    Article  MATH  MathSciNet  Google Scholar 

  6. V.F. Demyanov, “On connections between Clarke’s subdifferential and the quasidifferential” (in Russian), Vestnik Leningradskogo Universiteta 13 (1980) 18–24.

    MathSciNet  Google Scholar 

  7. V.F. Demyanov, ed., Nonsmooth problems of optimization and control theory (in Russian) (Leningrad University Press, Leningrad, 1983).

    Google Scholar 

  8. V.F. Demyanov and A.M. Rubinov, “On quasidifferentiable functions”, Soviet Mathematics Doklady 21 (1980) 14–17.

    MATH  Google Scholar 

  9. V.F. Demyanov and A.M. Rubinov, “On quasidifferentiable mappings”, Mathematische Operationsforschung und Statistik, Series Optimization 14 (1983) 3–21.

    MATH  Google Scholar 

  10. Tuy Hoang, “Global minimization of a difference of two convex functions”, Preprint of the Institute of Mathematics of Hanoi, 1983.

    Google Scholar 

  11. P.F. Kough, “The indefinite quadratic programming problem”, Operational Research 27 (1979) 516–533.

    MATH  MathSciNet  Google Scholar 

  12. S.S. Kutateladze and A.M. Rubinov, Minkowski duality and its applications (in Russian) (Nauka, Novosibirsk, 1976).

    Google Scholar 

  13. Le van Hot, “On the differentiability of multivalued mappings I, II”, Commentationes Mathematical Universitae Carolinae 22 (1981) 267–280, 337–350.

    MATH  Google Scholar 

  14. R. Mifflin, “Semismooth and semiconvex functions in constrained optimization”, SIAM Journal on Control and Optimization 15 (1977) 959–972.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Miriča, “The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mappings”, Preprint Series in Mathematics 31 (1981), University of Bucharest. A version may also be found in Nonlinear Analysis 6 (1982) 1335–1368.

    Google Scholar 

  16. A.M. Neumark, Normierte Algebren, (Deutscher Verlag der Wissenschaft, Berlin, 1959).

    MATH  Google Scholar 

  17. F. Nožička, J. Guddat, H. Hollatz and B. Bank, Theorie der linearen parametrischen Optimierung (Akademie-Verlag, Berlin, 1974).

    MATH  Google Scholar 

  18. E.A. Nurminski, “On the differentiability of multivalued mappings” (in Russian), Kibernetika 5 (1978) 46–48.

    Google Scholar 

  19. E.A. Nurminski, “Bibliography on nondifferentiable optimization”, Working Paper WP-82-32, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1982).

    Google Scholar 

  20. N.A. Pecherskaya, “On the differentiability of multivalued mappings (in Russian), Vestnik Leningradskogo Universiteta 7 (1981) 115–117.

    MathSciNet  Google Scholar 

  21. L.N. Polyakova, “Necessary conditions for an extremum of quasidifferentiable functions” (in Russian), Vestnik Leningradskogo Universiteta 13 (1980) 57–62.

    MathSciNet  Google Scholar 

  22. B.N. Pshenichnyi, Necessary conditions for an extremum (Nauka, Moscow, 1969 and 1982); English translation by Dekker, New York, 1971.

    Google Scholar 

  23. H. Radström, “An embedding theorem for spaces of convex sets”, Proceedings of the American Mathematical Society 3 (1952) 165–169.

    Article  MATH  MathSciNet  Google Scholar 

  24. R.T. Rockafellar, Convex analysis, (Princeton University Press, Princeton, New Jersey, 1970).

    MATH  Google Scholar 

  25. R.T. Rockafellar, “The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions”. In the series Research and education in mathematics (Heldermann-Verlag, Berlin (West), 1981).

    Google Scholar 

  26. R.T. Rockafellar, “Favourable classes of Lipschitz continuous functions in subgradient optimization”, Working Paper WP-81-1, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1981).

    Google Scholar 

  27. A.M. Rubinov, Superlinear multivalued mappings and their applications to problems of mathematical economy (in Russian) (Nauka, Leningrad, 1980).

    Google Scholar 

  28. K. Tammer, “Möglichkeiten zur Anwending der Erkenntnisse der parametrischen Optimierung für die Lösung indefiniter quadratischer Optimierungsprobleme”, Mathematische Optimierungsforschung und Statistik 7 (1976) 209–222.

    MathSciNet  Google Scholar 

  29. Yu.N. Tyurin, “Mathematical formulation of a simplified model of production planning” (in Russian), Ekonomika i Matematicheskie Metody 1 (1965) 391–410.

    Google Scholar 

  30. R.S. Womersley, “Optimality conditions for piecewise smooth functions”, Mathematical Programming Study 17 (1982) 13–27.

    MATH  MathSciNet  Google Scholar 

  31. V.A. Zalgaller, “On the representation of functions of two variables as a difference of convex functions” (in Russian) Vestnik Leningradskogo Universiteta 1 (1963) 44–45.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. F. Demyanov L. C. W. Dixon

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Melzer, D. (1986). On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions. In: Demyanov, V.F., Dixon, L.C.W. (eds) Quasidifferential Calculus. Mathematical Programming Studies, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121142

Download citation

  • DOI: https://doi.org/10.1007/BFb0121142

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00928-0

  • Online ISBN: 978-3-642-00929-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics