Skip to main content

Linearization methods for optimization of functionals which depend on probability measures

  • Chapter
  • First Online:
Stochastic Programming 84 Part II

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 28))

Abstract

The main purpose of this paper is to discuss numerical optimization procedures for problems in which both the objective function and the constraints depend on distribution functions. The objective function and constraints are assumed to be nonlinear and to have directional derivatives. The proposed algorithm is based on duality relations between the linearized problem and some special finite-dimensional minimax problem and is of the feasible-direction type. The resulting minimax problem is solved using the cutting-plane technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Birge and R. Wets, “Designing approximation schemes for stochastic optimization problems, in particular for stochastic problems with recourse”, Working paper WP-83-114, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1983).

    Google Scholar 

  2. T. Cipra, “Class of unimodal distributions and its transformations”, časopis pro pěstovani Matematiky 103 (1978) 17–26.

    MATH  MathSciNet  Google Scholar 

  3. G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, NJ, 1963).

    MATH  Google Scholar 

  4. V. Demyanov and L. Vasilyev, Nondifferentiable optimization (Nauke, Moscow, 1981).

    Google Scholar 

  5. J. Dupačova, “Minimax stochastic programs with nonconvex nonseparable penalty functions”, in: A. Prekopa, ed., Colloquia Mathematica Societatis Janos Bolyai 12, Progress in Operations Research Eger 1974 (North-Holland, Amsterdam, 1976) pp. 303–316.

    Google Scholar 

  6. J. Dupačova, “Minimax approach to stochastic linear programming and the moment problem”, Zeitschrift fur Angewandte Mathematik und Mechanik 58 (1978) T466–T467.

    Google Scholar 

  7. B.C. Eaves and W.I. Zangwill, “Generalized cutting plane algorithms”, SIAM Journal on Control 9 (1971) 529–542.

    Article  MathSciNet  Google Scholar 

  8. Yu. Ermoliev, “Method for stochastic programming in randomized strategies”, Kibernetika 1 (1970) 3–9 (in Russian).

    Google Scholar 

  9. Yu. Ermoliev and C. Nedeva, “Stochastic optimization problems with partially known distribution functions”, Collaborative paper CP-82-60, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1982).

    Google Scholar 

  10. Yu. Ermoliev, A. Gaivoronski and C. Nedeva, “Stochastic optimization problems with incomplete information on distribution functions”, Working paper WP-83-113, International Institute for Applied Systems Analysis (Laxenburg, Austria, 1983).

    Google Scholar 

  11. V. Fedorov, Theory of optimal experiments (Academic Press, New York, 1972).

    Google Scholar 

  12. V. Fedorov, Numerical methods of maximin (Nauka, Moscow, 1979).

    Google Scholar 

  13. M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly 3 (1956) 95–110.

    Article  MathSciNet  Google Scholar 

  14. A. Gaivoronski, “Optimization of functionals which depend on distribution functions: 1. Nonlinear functional and linear constraints”, Working paper WP-83-114, International Institute for Applied Systems Analysis, (Laxenburg, Austria, 1983).

    Google Scholar 

  15. A. Golodnikov, “Optimization problems with distribution functions”, Ph.D. Thesis, V. Glushkov Institute for Cybernetics (Kiev, 1979, in Russian).

    Google Scholar 

  16. A. Golodnikov, A. Gaivoronski and Le Ding Fung, “A method for solving limit extremum problems applied to the minimization of functionals”, Kibernetika 1 (1980) 99–103.

    Google Scholar 

  17. P.J. Huber, Robust Statistics (John Wiley & Sons, New York, 1981).

    Book  MATH  Google Scholar 

  18. A. Karr, “Extreme points of certain sets of probability measures, with applications”, Mathematics of Operations Research 8 (1983) 74–85.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.E. Kelley, “The cutting-plane method for solving convex programs”, Journal of Society for Industrial and Applied Mathematics 8 (1960) 703–712.

    Article  MathSciNet  Google Scholar 

  20. J. Kiefer and J. Wolfowitz, “Optimum designs in regression problems”, Annals of mathematical statistics 30 (1959) 271–294.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Krein and A. Nudelman, The Markov moment problem and extremal problems, Translation Mathem. Monographs 50 (American Mathematical Society, Providence, RI, 1977).

    MATH  Google Scholar 

  22. L. Nazareth and R.J.-B. Wets, “Algorithms for stochastic programs: the case of nonstochastic tenders”, Working paper WP-83-5 (Revised version), International Institute for Applied Systems Analysis, (Laxenburg, Austria, 1983).

    Google Scholar 

  23. R. Wets, Grundlagen Konvexer Optimierung, Lecture Notes in Economics and Mathematical Systems 137 (Springer-Verlag, Berlin, 1976).

    MATH  Google Scholar 

  24. P. Whittle, “Some general points in the theory of optimal experimental design”, Journal of the Royal Statistical Society (B) 35 (1973) 123–130.

    MATH  MathSciNet  Google Scholar 

  25. J. Žačkova, “On minimax solutions of stochastic linear programming problems”, časopis pro pěstovani matematiky 91 (1966) 423–430.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andras Prékopa Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Gaivoronski, A. (1986). Linearization methods for optimization of functionals which depend on probability measures. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part II. Mathematical Programming Studies, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121130

Download citation

  • DOI: https://doi.org/10.1007/BFb0121130

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00926-6

  • Online ISBN: 978-3-642-00927-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics