Skip to main content

Robustness against dependence in PERT: An application of duality and distributions with known marginals

  • Chapter
  • First Online:
Stochastic Programming 84 Part I

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 27))

Abstract

A PERT-type project planning problem is considered, under the assumption (to be relaxed in Section 4) that the marginal distributions of the durations of the activities are known. Instead of the assumption of independence a minimax approach is proposed. A complete characterization of worst-case joint distributions, which by definition maximize the mean delay of the project completion time over a fixed target time T, is given. In the same framework also an optimal value for T is determined: it balances the costs of delay with the costs for large values of T in a two-stage stochastic program.

The main tool of analysis is duality. Worst-case distributions can be described as the solutions of a generalized transportation problem. The complementary slackness conditions of this linear program and its dual characterize the worst-case distributions by means of a condition on their supports. Due to the special structure, the dual problem can be reduced to a finite-dimensional convex program. By dualizing the reduced dual again, a flow problem on the PERT-network is derived. Optimal flows appear to be the criticality numbers of the worst-case distributions. In Section 2 special attention is paid to the characterization of the so-called NW Rule Solution for a generalized transportation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Cambanis, G. Simons and W. Stout, ”Inequalities for Ek(X, Y) when the marginals are fixed“, Zeitschrift für Wahrscheinlichkeitsrechnung und verwandte Gebiete 36 (1976) 285–294.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Cipra, ”Class of unimodal distributions and its transformations’, Časopis pro pěstování matematiky, roČ. 103 (1978) 17–26.

    MATH  MathSciNet  Google Scholar 

  3. H.J. Cleef and W. Gaul, ”Project scheduling via stochastic programming“ Mathematische Operationsforschung und Statistik Series Optimization 13 (1982) 449–469.

    MATH  MathSciNet  Google Scholar 

  4. J. DupaČová, ”Stochastic and dynamic programming: Experience in stochastic programming models“, in: A. Prékopa, ed., Survey of Mathematical Programming, Proceedings of the 9th International Mathematical Programming Symposium (Publishing House of the Hungarian Academy of Sciences, Budapest, 1976), part 5, pp. 99–105.

    Google Scholar 

  5. S.E. Elmaghraby, ”On the expected duration of PERT type networks“, Management Science 5 (1967) 299–306.

    Article  Google Scholar 

  6. S.E. Elmaghraby, Activity networks (John Wiley & Sons, New York, London, Syndney, Toronto, 1977).

    MATH  Google Scholar 

  7. D.R. Fulkerson, ”A network flow computation for project cost curves“, Management Science 7 (1961) 167–178.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.R. Fulkerson, ”Expected critical path length in PERT type networks“, Operations Research 10 (1962) 808–817.

    Article  MATH  Google Scholar 

  9. N. Gaffke and L. Rüschendorf, ”On a class of extremal problems in statistics“, Mathematische Operationsforschung und Statistik Series Optimization 12 (1981) 123–135.

    MATH  MathSciNet  Google Scholar 

  10. N. Gaffke and L. Rüschendorf, ”On the existence of probability measures with given marginals“, Statistics and Decisions, to appear.

    Google Scholar 

  11. U. Garcia-Palomares and E. Giné, ”On the linear programming approach to the optimality property of Prokhorov’s distance“, Journal of Mathematical Analysis and Applications, 60 (1977) 596–600.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Gaul, ”Bounds for the expected duration of a stochastic project planning model“, Journal of Information and Optimization Sciences 2 (1981) 45–63.

    MATH  MathSciNet  Google Scholar 

  13. W. Gaul, ”Bounding distributions for random project-completion-times“, in: M.J. Beckman, W. Eichhorn and W. Krelle, eds., Mathematische Systeme in der ökonomie (Athenäum Verlag, Königstein/Ts, 1983) pp. 169–179.

    Google Scholar 

  14. W.-R. Heilmann, ”A mathematical programming approach to Strassen’s theorem on distributions with given marginals“, Mathematische Operationsforschung, und Statistik. Series Optimization 12 (1981) 593–596.

    MATH  MathSciNet  Google Scholar 

  15. H.G. Kellerer, ”Funktionen auf Produkträumen mit vorgegebenen Marginalfunktionen“, Mathematische Annalen 144 (1961) 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  16. H.G. Kellerer, ”Verteilungsfunktionen mit gegebenen Marginalverteilungen“, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 3 (1964) 247–270.

    Article  MATH  MathSciNet  Google Scholar 

  17. H.G. Kellerer, ”Masstheoretische Marginalprobleme“, Mathematische Annalen 153 (1964) 168–198.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.G. Kellerer, ”Duality theorems for marginal problems and stochastic applications“, in: Proceedings of the 7th Braşov Conference on Probability Theory (to appear, 1984).

    Google Scholar 

  19. H.G. Kellerer, ”Duality theorems for marginal problems“, to be published (1984).

    Google Scholar 

  20. G.B. Kleindorfer, ”Bounding distributions for a stochastic acyclic network“, Operations Research 19 (1971) 1586–1601.

    Article  MATH  MathSciNet  Google Scholar 

  21. T.L. Lai and H. Robbins, ”A class of dependent random variables and their maxima“, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 42 (1978) 89–111.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. L. Lehman, ”Some concepts of dependence“, The Annals of Mathematical Statistics 37 (1966) 1137–1152.

    Article  Google Scholar 

  23. A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its applications (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1979).

    MATH  Google Scholar 

  24. J.J. Martin, ”Distribution of the time through a directed, acyclic network“, Operations Research 13 (1965) 46–66.

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Meilijson and A. Nádas, ”Convex majorization with an application to the length of critical paths“, Journal of Applied Probability 16 (1979) 671–677.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.J. Moder and C.R. Phillips, Project management with CPM and PERT (Rheinhold, New York, NY, 1964).

    Google Scholar 

  27. A. Nádas, ”Probabilistic PERT“, IBM Journal of Research and Development 23 (1979) 339–347.

    Article  MATH  Google Scholar 

  28. P. Robillard and M. Traham, ”The completion time of PERT networks“, Operations Research 25 (1977) 15–29.

    Article  MATH  Google Scholar 

  29. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  30. L. Rüschendorf, ”Inequalities for the expectation of Δ-monotone functions“, Zeitschrift für W Wahrenscheinlichkeitstheorie und verwandte Gebiete 54 (1980) 341–349.

    Article  MATH  Google Scholar 

  31. L. Rüschendorf, ”Sharpness of Fréchet-bounds“, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57 (1981) 293–302.

    Article  MATH  Google Scholar 

  32. L. Rüschendorf, ”Random variables with maximum sums“, Advances in Applied Probability 14 (1982) 623–632.

    Article  MATH  MathSciNet  Google Scholar 

  33. L. Rüschendorf, ”Solution of a statistical optimization problem by rearrangement methods“, Metrika 30 (1983) 55–61.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Schay, ”Nearest random variables with given distributions“, The Annals of Probability 2 (1974). 163–166.

    Article  MATH  MathSciNet  Google Scholar 

  35. A.W. Shogan, ”Bounding distributions for a stochastic PERT network“, Networks 7 (1977) 359–381.

    Article  MATH  MathSciNet  Google Scholar 

  36. V. Strassen, ”The existence of probability measures with given marginals“, The Annals of Mathematical Statistics 36 (1965) 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Szulga, ”On the Wasserstein metric“, Transactions of the eighth Prague Conference on information theory, statistical decision functions, random process (Academia, Publishing house of the Czechoslovak Academy of Sciences, Prague, 1978), Volume B, pp. 267–273.

    Google Scholar 

  38. A. Szulga, ”On minimal metrics in the space of random variables“, Probability Theory and its Applications 2 (1982) 401–405. Academy of Sciences of the USSR, Moscow.

    Google Scholar 

  39. W. Whitt, ”Bivariate distributions with given marginals“, The Annals of Statistics 4 (1976) 1280–1289.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. ŽaČková, ”On minimax solutions of stochastic linear programming, problems“, Časopis pro pěstování matematiky, roČ. 91 (1966) 423–429.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andras Prékopa Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Klein Haneveld, W.K. (1986). Robustness against dependence in PERT: An application of duality and distributions with known marginals. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part I. Mathematical Programming Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121119

Download citation

  • DOI: https://doi.org/10.1007/BFb0121119

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00924-2

  • Online ISBN: 978-3-642-00925-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics