Skip to main content

Multidimensional numerical integration using pseudorandom numbers

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 27))

Abstract

Practical implementations of Monte Carlo methods for multidimensional numerical integration use nodes derived from pseudorandom numbers. We present effective error bounds for Monte Carlo integration with nodes derived from the two most common types of pseudorandom numbers, namely linear congruential pseudorandom numbers and Tausworthe pseudorandom numbers. We compare the results with those obtained by the use of quasirandom nodes.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Borosh and H. Niederreiter, ”Optimal multipliers for pseudo-random number generation by the linear congruential method“, BIT 23 (1983) 65–74.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Faure, ”Discrépance de suites associées à un système de numération (en dimension s)“, Acta Arithmetica 41 (1982) 337–351.

    MATH  MathSciNet  Google Scholar 

  3. S. Haber, ”Parameters for integrating periodic functions of several variables“, Mathematics of Computation 41 (1983) 115–129.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.M. Hammersley, ”Monte Carlo methods for solving multivariable problems“, Annals of the New York Academy of Sciences 86 (1960) 844–874.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Hlawka, ”Funktionen von beschränkter Variation in der Theorie der Gleichverteilung“, Annali di Matematica Pure ed Applicata (4) 54 (1961) 325–333.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.K. Hua and Y. Wang, Applications of number theory to numerical analysis (Springer-Verlag, Berlin, 1981).

    MATH  Google Scholar 

  7. D.E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, 2nd ed. (Addison-Wesley, Reading, MA, 1981).

    MATH  Google Scholar 

  8. N.M. Korobov, ”On the computation of optimal coefficients“ (in Russian), Doklady Akademia Nauk SSSR 267 (1982) 289–292.

    MathSciNet  Google Scholar 

  9. L. Kuipers and H. Niederreiter, Uniform distribution of sequences (Wiley-Interscience, New York, 1974).

    MATH  Google Scholar 

  10. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of mathematics and its applications, Vol. 20 (Addison-Wesley, Reading, MA, 1983).

    MATH  Google Scholar 

  11. D. Maisonneuve, ”Recherche et utilisation des ‘bons treillis’. Programmation et résultats numériques“, in: S.K. Zaremba, ed., Applications of number theory to numerical analysis (Academic Press, New York, 1972) pp. 121–201.

    Google Scholar 

  12. H. Niederreiter, ”On the distribution of pseudo-random numbers generated by the linear congruential method. III“, Mathematics of Computation 30 (1976), 571–597.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Niederreiter, ”Pseudo-random numbers and optimal coefficients“, Advances in Mathematics 26 (1977) 99–181.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Niederreiter, ”Existence of good lattice points in the sense of Hlawka“, Monatshefte für Mathematik 86 (1978) 203–219.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Niederreiter, ”The serial test for linear congruential pseudo-random numbers“, Bulletin of the American Mathematical Society 84 (1978) 273–274.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Niederreiter, ”Quasi-Monte Carlo methods and pseudo-random numbers“, Bulletin of the American Mathematical Society 84 (1978) 957–1041.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Niederreiter, ”Applications des corps finis aux nombres pseudo-aléatoires“, in: Séminaire de théorie des nombres 1982–1983 (Université de Bordeaux I, Talence, 1983) exposé 38.

    Google Scholar 

  18. H. Niederreiter, ”The performance of k-step pseudorandom number generators under the uniformity test“, SIAM Journal on Scientific and Statistical Computing 5 (1984) 798–810.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Niederreiter, ”The serial test for pseudo-random numbers generated by the linear congruential method“, Numerische Mathematik 46 (1985) 51–68.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.C. Tausworthe, ”Random numbers generated by linear recurrence modulo two“, Mathematics of Computation 19 (1965) 201–209.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.K. Zaremba, ”Some applications of multidimensional integration by parts“ Annales Polonici Mathematicae 21 (1968) 85–96.

    MATH  MathSciNet  Google Scholar 

  22. S.K. Zaremba, ”La méthode des ‘bons treillis’ pour le calcul des intégrales multiples“, in: S.K. Zaremba, ed., Applications of number theory to numerical analysis (Academic Press, New York, 1972) pp. 39–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andras Prékopa Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Niederreiter, H. (1986). Multidimensional numerical integration using pseudorandom numbers. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part I. Mathematical Programming Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121112

Download citation

  • DOI: https://doi.org/10.1007/BFb0121112

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00924-2

  • Online ISBN: 978-3-642-00925-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics