Skip to main content

Linear complementarity problems solvable by a polynomially bounded pivoting algorithm

  • Chapter
  • First Online:
Mathematical Programming Essays in Honor of George B. Dantzig Part II

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 25))

Abstract

A sufficient condition is given under which the parametric principal pivoting algorithm will compute the unique solution to a linear complementarity problem defined by an n by n P-matrix in no more than n pivots. The condition is then shown to be satisfied by a P-matrix which has a hidden Z transpose and thus in particular, by an H-matrix with positive diagonals as well as by a strictly diagonally dominant matrix. The same condition is also shown to be sufficient for Lemke’s almost complementary algorithm to compute a solution to a linear complementarity problem defined by an n by n nondegenerate matrix in at most n+1 pivots. Finally, a polynomial testing procedure for the condition is described.

This research was initiated while the first author was visiting the Mathematics Research Center and the Department of Computer Sciences at the University of Wisconsin-Madison where he was partially supported by the United States Army under Contract No. DAAG29-80-C-0041.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to notes

  1. M. Aganagic, “On diagonal dominance in linear complementarity”, Linear Algebra and its Applications 39 (1981) 41–49.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms (Addison-Wesley, 1974).

    Google Scholar 

  3. M. Fiedler and V. Ptak, “On matrices with nonpositive off-diagonal elements and positive principal minors”, Czechoslovak Mathematical Journal 12 (1962) 382–400.

    MathSciNet  Google Scholar 

  4. J. Moré, “Classes of functions and feasibility conditions in nonlinear complementarity problems”, Mathematical Programming 6 (1974) 327–338.

    Article  MATH  MathSciNet  Google Scholar 

  5. T.H. Shiau, “Iterative linear programming for linear complementarity and related problems”, Ph.D. dissertation, Department of Computer Sciences, University of Wisconsin-Madison (1983).

    Google Scholar 

References

  1. A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences (Academic Press, New York, 1979).

    MATH  Google Scholar 

  2. J.R. Birge and A. Gana, “Computational complexity of van der Heyden’s variable dimension algorithm and Dantzig-Cottle’s principal pivoting method for solving LCP’s”, Mathematical Programming 26 (1983) 316–325.

    Article  MATH  MathSciNet  Google Scholar 

  3. R.G. Bland, D. Goldfarb and M.J. Todd, “The ellipsoid method: A survey”, Operations Research 29 (1981) 1039–1091.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Chandrasekaran, “A special case of the linear complementarity problem”, Opsearch 7 (1970) 263–268.

    MathSciNet  Google Scholar 

  5. S.J. Chung, “A note on the complexity of LCP: The LCP is strongly NP-complete”, Technical Report 792, Department of Industrial and Operations Engineering, The University of Michigan (Ann Arbor, Michigan, 1979).

    Google Scholar 

  6. R.W. Cottle, “Monotone solutions of the parametric linear complementarity problem”, Mathematical Programming 3 (1972) 210–214.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.W. Cottle, “Manifestations of the Schur complement”, Linear Algebra and its Applications 8 (1974) 189–211.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.W. Cottle, “Completely Q-matrices”, Mathematical Programming 19 (1980) 347–351.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.W. Cottle and J.S. Pang, “On solving linear complementarity problems as linear programs”, Mathematical Programming Study 7 (1978) 88–107.

    MATH  MathSciNet  Google Scholar 

  10. Y. Fathi “Computational complexity of LCPs associated with positive definite symmetric matrices”, Mathematical Programming 17 (1979) 335–344.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Grotschel, L. Lovasz and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica 1 (1981) 169–197.

    Article  MathSciNet  Google Scholar 

  12. L.G. Khachiyan, “A polynomial algorithm in linear programming”, Soviet Mathematics Doklady 20 (1979) 191–194.

    MATH  Google Scholar 

  13. C.E. Lemke, “Bimatrix equilibrium points and mathematical programming”, Management Science 4 (1965) 681–689.

    Article  MathSciNet  Google Scholar 

  14. C.E. Lemke, “Recent results on complementarity problems”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear Programming (Academic Press, New York, 1970) pp. 349–384.

    Google Scholar 

  15. O.L. Mangasarian, “Linear complementarity problems solvable by a single linear program”, Mathematical Programming 10 (1976) 263–270.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.R. McCammon, “Complementary pivoting”, Ph.D. dissertation, Department of Mathematical Sciences, Rensselaer Polytechnique Institute (Troy, New York 1970).

    Google Scholar 

  17. K. G. Murty, “On the parametric complementarity problems”, Technical Report, The University of Michigan (Ann Arbor, Michigan, 1977).

    Google Scholar 

  18. K.G. Murty, “Computational complexity of complementary pivot methods”, Mathematical Programming Study 7 (1978) 61–73.

    MATH  MathSciNet  Google Scholar 

  19. J.S. Pang, “On cone orderings and the linear complementarity problem”, Linear Algebra and its Applications 22 (1978) 267–281.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.S. Pang, “Hidden Z-matrices with positive principal minors”, Linear Algebra and its Applications 23 (1979) 201–215.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.S. Pang, “On a class of least-element complementarity problems”, Mathematical Programming 16 (1979) 111–126.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.S. Pang, “On discovering hidden Z-matrices”, in: C.V. Coffman and G.J. Fix, eds. Constructive approaches to mathematical models (Academic Press, New York, 1979) pp. 231–241.

    Google Scholar 

  23. J.S. Pang, “A new and efficient algorithm for a class of portfolio selection problems”, Operations Research 28 (1980) 754–767.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.S. Pang, I. Kaneko and W.P. Hallman, “On the solution of some (parametric) linear complementarity problems with applications to portfolio selection, structural engineering and actuarial graduation”, Mathematical Programming 16 (1979) 325–347.

    Article  MATH  MathSciNet  Google Scholar 

  25. J.S. Pang and P.S.C. Lee, “A parametric linear complementarity technique for the computation of equilibrium prices in a single commodity spatial model”, Mathematical Programming 20 (1981) 81–102.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Saigal, “A note on a special linear complementarity problem”, Opsearch 7 (1970) 175–183.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard W. Cottle

Additional information

Dedicated to Professor George B. Dantzig on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Pang, J.S., Chandrasekaran, R. (1985). Linear complementarity problems solvable by a polynomially bounded pivoting algorithm. In: Cottle, R.W. (eds) Mathematical Programming Essays in Honor of George B. Dantzig Part II. Mathematical Programming Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121072

Download citation

  • DOI: https://doi.org/10.1007/BFb0121072

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00920-4

  • Online ISBN: 978-3-642-00921-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics