Skip to main content

On the facial structure of scheduling polyhedra

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 24))

Abstract

A well-known job shop scheduling problem can be formulated as follows. Given a graph G with node set N and with directed and undirected ares, find an orientation of the undirected ares that minimizes the length of a longest path in G. We treat the problem as a disjunctive, program, without recourse to integer, variables, and give a partial characterization of the scheduling polyhedron P(N), i.e., the convex hull of feasible schedules. In particular, we derive all the facet inducing inequalities for the scheduling polyhedron P(K) defined on some clique with node set K, and give a sufficient condition, for such inequalities to also induce facets of P(N). One of our results is that any inequality that induces a facet of P(H) for some H⊂K, also induces a facet of P(K). Another one is a characterization of adjacent facets in terms of the index sets of the nonzero coefficients of their defining inequalities. We also address the constraint identification problem, and give a procedure for finding an inequality that cuts off a given solution to a subset of the constraints.

Research supported by NSF under grants ECS-8205425 and ECS-8218181, and by ONR under contract N00014-82-K-0329 NR047-607.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balas, “Finding a minimaximal path in a disjunctive PERT network”, Theorie des Graphes Journées Internationales d’Etude (Dunod, Paris, 1967), pp. 21–30.

    Google Scholar 

  2. E. Balas, “Machine sequencing via disjunctive graphs: An implicit enumeration algorithm,” Operations Research 17 (1969) 941–957.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Balas, “Disjunctive programming: Properties of the convex hull of feasible points”, MSRR No. 348, Carnegie-Mellon University, July 1974.

    Google Scholar 

  4. E. Balas, “Disjunctive programming,” Annals of Discrete Mathematics 5 (1979) 3–51.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Balas, “Disjunctive programming and combinatorial optimization”, Paper presented at the Symposium on the Application of Discrete Mathematics, Cambridge, MA, June 27–30, 1983.

    Google Scholar 

  6. D.R. Fulkerson, “Blocking polyhedra”, in: B. Harris, ed., Graph Theory and Its Applications (Academic Press, New York, 1970) pp 93–112.

    Google Scholar 

  7. D.R. Fulkerson, “Blocking and antiblocking pairs of polyhedra”, Mathematical Programming 1 (1971) 168–194.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Grötschel, M. Jünger and G. Reinelt, ‘Facets of the linear ordering polytope”, Report No. 82217-OR, Institut für öconometrie und Operations Research, University of Bonn, May 1982.

    Google Scholar 

  9. B. Grünbaum, Convex polytopes (Wiley, New York, 1967).

    MATH  Google Scholar 

  10. R.G. Jeroslow, “Cutting plane theory: Disjunctive methods”, Annals of Discrete Mathematics 1 (1977) 293–330.

    Article  MathSciNet  Google Scholar 

  11. J.K. Lenstra, Sequencing by enumerative methods, Mathematical Centre Tracts 69 (Mathematisch Centrum, Amsterdam, 1977).

    MATH  Google Scholar 

  12. J.F. Muth and G.L. Thompson, Industrial scheduling (Prentice-Hall, New York, 1963).

    Google Scholar 

  13. L. Németi, “Das Reihenfolgeproglem in der Fertigungs-programmierung und Linearplannung mit logischen Bedingungen”, Mathematica (Cluj), 6 (1964) 87–99.

    Google Scholar 

  14. A.H.G. Rinnooy Kan Machine scheduling problems: Classification, complexity and computations (Nijhoff, The Hague, 1976).

    Google Scholar 

  15. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, 1970).

    MATH  Google Scholar 

  16. B. Roy and B. Sussman, “Les problèmes d’ordonnancement avec contraintes disjonctives”, SEMA, Note DS 9 bis (1964).

    Google Scholar 

  17. J. Stoer and C. Witzgall, Convexity and optimization in finite dimensions I (Springer-Verlag, Berlin, New York, 1970).

    Google Scholar 

  18. J. Tind, “Blocking and antiblocking sets”, Mathematical Programming 6 (1974) 157–166.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. W. Cottle

Additional information

Dedicated to George B. Dantzig for his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Balas, E. (1985). On the facial structure of scheduling polyhedra. In: Cottle, R.W. (eds) Mathematical Programming Essays in Honor of George B. Dantzig Part I. Mathematical Programming Studies, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121051

Download citation

  • DOI: https://doi.org/10.1007/BFb0121051

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00918-1

  • Online ISBN: 978-3-642-00919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics