Skip to main content

Dual nested decomposition of staircase linear programs

  • Chapter
  • First Online:
Mathematical Programming Essays in Honor of George B. Dantzig Part I

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 24))

Abstract

A staircase linear program is a linear program in which the variables can be partitioned into a set of time periods, with constraints relating only variables in adjacent periods. This paper describes a specialized technique for solving staircase LP’s, called a “nested decomposition” algorithm. This technique applies the Dantzig-Wolfe decomposition principle to the dual of the LP in a recursive manner. The resulting algorithm solves a sequence of small LP’s, one corresponding to each period. Each period communicates with the period that follows it by determining its right-hand side and with the period that precedes it by adding constraints. Some computational experience is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. Abrahamson, “A nested decomposition approach for solving staircase structured linear programs”, in: G.B. Dantzig, M.A.H. Dempster and M.J. Kallio, ed., Large-scale linear programming Vol. 1 (IIASA, Laxenburg, Austria, 1981) pp. 367–381.

    Google Scholar 

  2. P.G. Abrahamson, “A nested decomposition approach for solving staircase linear programs”, Technical Report SOL 83-4, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1983).

    Google Scholar 

  3. D. Ament, J. Ho, E. Loute and M. Remmelswaal, “LIFT: a nested decomposition algorithm for solving lower block triangular linear programs”, in: G.B. Dantzig, M.A.H. Dempster and M.J. Kallio, ed., Large-scale linear programming Vol. 1 (IIASA, Laxenburg, Austria, 1981) pp. 383–408.

    Google Scholar 

  4. J.F. Benders, “Partitioning procedures for solving mixed-variables programming problems”, Numerische Mathematik 4 (1962) 238–252.

    Article  MATH  MathSciNet  Google Scholar 

  5. G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, NJ, 1963).

    MATH  Google Scholar 

  6. G.B. Dantzig and P. Wolfe, “Decomposition principle of linear programs”, Operations Research 8 (1960) 101–110.

    Article  MATH  Google Scholar 

  7. G.B. Dantzig, “Time-staged linear programs”, Technical Report SOL 80-28, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1980).

    Google Scholar 

  8. R. Fourer, “Sparse Gaussian elimination of staircase linear systems”, Technical Report SOL 79-17, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1979).

    Google Scholar 

  9. R. Fourer, “Solving staircase linear programs by the simplex method, 1: inversion”, Mathematical Programming 23 (1982) 274–313.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Fourer, “Solving staircase linear programs by the simplex method, 2: pricing”, Mathematical Programming 25 (1983) 251–292.

    Article  MATH  MathSciNet  Google Scholar 

  11. C.R. Glassey, “Nested decomposition and multi-stage linear programs”, Management Science 20 (1973) 282–292.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.K. Ho and A.S. Manne, “Nested decomposition for dynamic models”, Mathematical Programming 6 (1974) 121–140.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.K. Ho, “Nested decompsoition of large scale linear programs with the staircase structure”, Technical Report SOL 74-4, Systems Optimization Laboratory, Department of Operations Research, Stanford University, (Stanford, CA, 1974).

    Google Scholar 

  14. J.K. Ho and E. Loute, “A comparative study of two methods for staircase linear programs”, ACM Transactions on Mathematical Software 6 (1980) 17–30.

    Article  MATH  Google Scholar 

  15. A. Perold and G.B. Dantzig, “A basis factorization method for block triangular linear programs”, in: J.S. Duff and G.W. Stewart, eds., Sparse matrix proceedings 1978 (SIAM, Philadelphia, 1979) pp. 283–312.

    Google Scholar 

  16. A. Propoi and V. Krivonozhko, “The simplex method for dynamic linear programs”, Report RR-78-14, IIASA (Laxenburg, Austria, 1978).

    MATH  Google Scholar 

  17. R.M. van Slyke and R. Wets, “L-shaped linear programs with applications to optimal control and stochastic programming”, SIAM Journal of Applied Mathematics 17 (1969) 638–663.

    Article  MATH  Google Scholar 

  18. R. Wittrock, “Advances in a nested decomposition algorithm for solving staircase linear programs”, Technical Report SOL 83-2, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA 1983).

    Google Scholar 

  19. R.D. Wollmer, “A substitute inverse for the basis of a staircase linear program”, Mathematics of Operations Research 2 (1977) 230–239.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. W. Cottle

Additional information

Dedicated to Professor George B. Dantzig on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Wittrock, R.J. (1985). Dual nested decomposition of staircase linear programs. In: Cottle, R.W. (eds) Mathematical Programming Essays in Honor of George B. Dantzig Part I. Mathematical Programming Studies, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121043

Download citation

  • DOI: https://doi.org/10.1007/BFb0121043

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00918-1

  • Online ISBN: 978-3-642-00919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics