Skip to main content

Node-weighted graphs having the König-Egerváry property

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 22))

Abstract

A graph G with positive integral node-weights b i is said to be a b-König-Egerváry graph (b-KEG for short) if there exist a transversal T and a b-matching λ such that the weight of T is equal to the value of λ; the usual König-Egerváry graphs correspond to b=(1, 1, …, 1).

Several characterizations and two polynomial recognition algorithms for b-KEGs are presented. Algorithm 1 either recognizes (G, b) as being a b-KEG, or else exhibits an ‘obstruction’. Algorithm 2 associates a quadratic boolean function f with (G, b) and reduces the problem of recognizing whether (G, b) is a b-KEG to that of solving the equation f=0. In case (G, b) is a b-KEG, both algorithms provide a minimum weight transversal.

Some of our results generalize previous results obtained in the unweighted case by Deming, Gavril and Sterboul.

A companion paper will analyze applications of the weighted König-Egerváry property to quadratic 0–1 optimization.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Aspvall, M.F. Plass and R.E. Tarjan, “A linear-time algorithm for testing the truth of certain quantified formulas”, Information Processing Letters 8 (1979) 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Berge, Graphes et hypergraphes (Dunod, Paris, 1970).

    MATH  Google Scholar 

  3. R.W. Deming, “Independence numbers of graphs—An extension of the König-Egerváry theorem”, Discrete Mathematics 27 (1979) 23–34.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.R. Garey and D.S. Johnson, Computers and intractability (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  5. F. Gavril, “Testing for equality between maximum matching and minimum node covering”, Information Processing Letters 6 (1977) 199–202.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Gondran and M. Minoux, Graphes et algorithmes (Eyrolles, Paris, 1979).

    MATH  Google Scholar 

  7. P.L. Hammer, P. Hansen and B. Simeone, “Vertices belonging to all or to no maximum stable sets of a graph”, SIAM Journal on Algebraic and Discrete Methods 3 (1982) 511–522.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Harary, Graph theory (Addison-Wesley, Reading, Mass., 1972).

    Google Scholar 

  9. J.L. Kennington and R.V. Helgason, “Algorithms for network programming” (Wiley, New York, 1980).

    MATH  Google Scholar 

  10. E.L. Lawler, Combinatorial optimization: Networks and matroids (Holt, Rinehart and Winston, New York, 1976).

    MATH  Google Scholar 

  11. L. Lovász, “Minimax theorems for hypergraphs”, in: C. Berge and D.K. Ray-Chaudhuri eds., Hypergraph seminar 1972, Lecture Notes 411 (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  12. W.M. Malhotra, M.P. Kumar and S.N. Maheshwari, “An O(|V|3) algorithm for finding maximum flows in networks”, Information Processing Letters 6 (1978) 277–278.

    Article  MathSciNet  Google Scholar 

  13. W.R. Pulleyblank, “Dual-integrality in b-matching problems”, Mathematical Programming Study 12 (1980) 176–196.

    MathSciNet  MATH  Google Scholar 

  14. B. Simeone, Quadratic 0–1 programming, boolean functions and graphs, Doctoral Dissertation, University of Waterloo, 1979.

    Google Scholar 

  15. F. Sterboul, “A characterization of the graphs in which the transversal number equals the matching number”, Journal of Combinatorial Theory, Series B 27 (1979) 228–229.

    Article  MathSciNet  MATH  Google Scholar 

  16. W.T. Tutte, “A short proof of the factor theorem for finite graphs”, Canadian Journal of Mathematics 6 (1954) 347–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Korte Klaus Ritter

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Bourjolly, J.M., Hammer, P.L., Simeone, B. (1984). Node-weighted graphs having the König-Egerváry property. In: Korte, B., Ritter, K. (eds) Mathematical Programming at Oberwolfach II. Mathematical Programming Studies, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121007

Download citation

  • DOI: https://doi.org/10.1007/BFb0121007

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00914-3

  • Online ISBN: 978-3-642-00915-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics