Skip to main content

Some numerical aspects of multivariable systems identification

  • Chapter
  • First Online:
Algorithms and Theory in Filtering and Control

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 18))

Abstract

This is a tutorial paper on the model structure selection problem in system identification. Two alternative approaches to the parametrization problem, by means of canonical forms and by the so-called ‘overlapping’ parametrizations, are discussed. The numerical problems which have to be faced for estimating the model structure are compared in the two cases and some recently proposed structure selection algorithms are illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike, “Markovian representations of stochastic processes by canonical variables”, SIAM Journal on Control and Optimization 13 (1975) 162–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Akaike, “Stochastic theory of minimal realization”, IEE Transactions on Automatic Control AC-19 (1974) 667–674.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Akaike, “Statistical predictor identification”, Annals of the Institute of Statistical Mathematics 22 (1970) 203–217.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Akaike, “Information theory and an extension of the maximum likelihood principle”, in: B.N. Petrov and F. Csaki, eds., Proceedings of the 2nd International, Symposium on Information Theory (Akademiai Kiado, Budapest, 1973).

    Google Scholar 

  5. H. Akaike, “A new look at the statistical model identification”, IEEE Transactions on Automatic Control AC-19 (1974) 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Akaike, “Canonical correlation analysis of time series and the use of an information criterion”, in: R.K. Mehra and D. Lainiotis, eds., System identification Advances and case studies (Academic Press, New York, 1976) pp. 27–69.

    Chapter  Google Scholar 

  7. B.D.O. Anderson, “The inverse problem of stationary covariance generation”, Journal of Statistical Physics 1 (1969) 133–147.

    Article  MathSciNet  Google Scholar 

  8. G.J. Bierman, Factorization methods for discrete sequential estimation (Academic Press, New York, 1977).

    MATH  Google Scholar 

  9. G.E.P. Box and G.M. Jenkins, Time series analysis forecasting and control (Holden Day, San Francisco, CA, 1970).

    MATH  Google Scholar 

  10. R.W. Brockett, Finite dimensional linear systems (Wiley, New York, 1970).

    MATH  Google Scholar 

  11. J.M.C. Clark, “The consistent selection of parametrizations in system identification”, Proceedings of the Joint Automatic Control Conference, Purdue University, West Lafayette, IN (1976).

    Google Scholar 

  12. M. Deistler, “Parametrization and consistent estimation of ARMA systems”, in: O.D. Anderson, ed., Time series (North-Holland, Amsterdam, 1980).

    Google Scholar 

  13. M.J. Denham, “Canonical forms for the identification of multivariable linear systems”, IEEE Transactions on Automatic Control AC-19 (1974) 646–656.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Faurre, “Realisations markoviennes de processus stationnaries”, Report Laboria No. 13, IRIA, Le Chesnay, France (March 1973).

    Google Scholar 

  15. F.R. Gantmacher, The theory of matrices (Chelsea, New York, 1960).

    Google Scholar 

  16. K. Glover and J.C. Willems, “Parametrization of linear dynamical control systems, canonical forms and identifiability”, IEEE Transactions on Automatic Control AC-19 (1974) 640–646.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Guidorzi, “Canonical structure in the identification of multivariable systems”, Automatica 11 (1975) 361–374.

    Article  MATH  MathSciNet  Google Scholar 

  18. E.J. Hannan, W.T.M. Dunsmuir and M. Deistler, “Estimation of vector ARMAX models”, Journal of Multivariate Analysis 10 (1980) 275–295.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Hazewinkel and R.E. Kalman, “Moduli and canonical forms for linear dynamical systems”, Tech. 7504/M, Econometric Institute, Erasmus University Rotterdam (1974).

    Google Scholar 

  20. M. Hazewinkel and R.E. Kalman, “On invariants, canonical forms and muduli for linear constant finite dimensional dynamical systems”, in: Proceedings of the International Symposium on Mathematical System Theory. Udine, Italy, Lecture Notes in Economics and Mathematical Systems 131 (Springer, Berlin, 1976) pp. 48–60.

    Google Scholar 

  21. B.L. Ho and R.L. Kalman, “Effective construction of linear statevariable models from input-output functions”, Regelungstechnik 14 (1966) 545–548.

    MATH  Google Scholar 

  22. E.T. Jaynes, “Information theory and statistical mechanics”, Physical Review 106 (1957) 620–630.

    Article  MathSciNet  Google Scholar 

  23. R.E. Kalman, “Algebraic geometric description of the class of linear systems of constant dimension”, 8th Annual Princeton Conference on Information Sciences and Systems, Princeton, NJ (1974).

    Google Scholar 

  24. R.E. Kalman, P.L. Falb and M. Arbib, Topics in mathematical system theory, (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  25. M.G. Kendall and A. Stuart, The advanced theory of statistics, Vol. 2 (Griffin, London, 1973).

    Google Scholar 

  26. A. Lindquist and G. Picci, “On the stochastic realization problem”, SIAM Journal on Control and Optimization 17 (1979) 365–389.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Ljung, “On the consistency of prediction error identification methods”, in: R.K. Mehra and D. Lainiotis, eds., System identification: Advances and case studies (Academic Press, New York, 1976) pp. 121–164.

    Chapter  Google Scholar 

  28. L. Ljung, “Some basic ideas in recursive identification”, in: O.L.R. Jacobs, M.H.A. Davis, M.A.H. Dempster, C.J. Harris and P.C. Parks, eds., Analysis and optimization of stochastic systems (Academic Press, New York, 1980) pp. 409–418.

    Google Scholar 

  29. L. Ljung and J. Rissanen, “On canonical forms, parameter identifiability, and the concept of complexity”, Proceedings of the 4th IFAC Symposium on Identification and System Parameter Estimation, Tbilisi, USSR (1976).

    Google Scholar 

  30. D.G. Luenberger, “Canonical forms for linear multivariable systems”, IEEE Transactions on Automatic Control AC-12 (1967) 290–293.

    Article  MathSciNet  Google Scholar 

  31. S. MacLane and G. Birkhoff, Algebra (Macmillan, New York, 1967).

    MATH  Google Scholar 

  32. D.Q. Mayne, “A canonical form for identification of multivariable linear systems”, IEEE Transactions on Automatic Control AC-17 (1972) 728–729.

    Article  MATH  MathSciNet  Google Scholar 

  33. C.C. Paige and M.A. Saunders, “Least squares estimation of discrete linear dynamical systems using orthogonal transformations”, SIAM Journal on Numerical Analysis 14 (1977) 180–193.

    Article  MATH  MathSciNet  Google Scholar 

  34. V.M. Popov, “Invariant description of linear, time invariant controlable systems”, SIAM Journal on Control 10 (1972) 254–264.

    Article  Google Scholar 

  35. J. Rissanen, “Basis invariants and canonical forms for linear dynamical systems”, Automatica 10 (1974) 175–182.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Rissanen and L. Barbosa, “Properties of infinite covariance matrices and stability of optimum predictors”, Information Sciences 1 (1969) 221–236.

    Article  MathSciNet  Google Scholar 

  37. J. Rissanen and L. Ljung, “Estimation of optimum structures and parameters for linear systems”, in: Proceedings of the International Symposium on Mathematical System Theory, Udine, Italy, Lecture Notes in Economics and Mathematical Systems 131 (Springer, Berlin, 1976) pp. 92–110.

    Google Scholar 

  38. Y.A. Rosanov, Stationary random processes (Holden Day, San Francisco, CA, 1967).

    Google Scholar 

  39. T. Soderstrom, L. Ljung and I. Gustavsson, “A comparative study of recursive identification methods” Tech. Rept. 7427, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1974).

    Google Scholar 

  40. E. Tse and H.L. Weinert, “Structure determination and parameter identification for multivariable stochastic linear systems”, IEEE Transactions on Automatic Control AC-20 (1975) 603–613.

    Article  MATH  Google Scholar 

  41. A.J.M. Van Overbeek and L. Ljung, “On line structure selection for multivariable state space models”, Proceedings of the 5th IFAC Symposium on Identification Parameter Estimation, Darmstadt (1979).

    Google Scholar 

  42. N. Wiener and P. Masani, “The prediction theory of multivariable random processes”, Acta Mathematica 98 (1957) 111–150.

    Article  MATH  MathSciNet  Google Scholar 

  43. W.M. Wonham, Linear multivariable control: A geometrical approach (Springer, Berlin, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Danny C. Sorensen Roger J. -B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Picci, G. (1982). Some numerical aspects of multivariable systems identification. In: Sorensen, D.C., Wets, R.J.B. (eds) Algorithms and Theory in Filtering and Control. Mathematical Programming Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120974

Download citation

  • DOI: https://doi.org/10.1007/BFb0120974

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00847-4

  • Online ISBN: 978-3-642-00848-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics