Skip to main content

The simplex SON algorithm for LP/embedded network problems

  • Chapter
  • First Online:
Network Models and Associated Applications

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 15))

Abstract

This paper develops a special partitioning method for solving LP problems with embedded network structure. These problems include many of the large-scale LP problems of practical importance, particularly in the fields of energy, scheduling, and distribution. The special partitioning method, called the simplex special ordered network (SON) procedure, applies to LP problems that contain both non-network rows and non-network columns, with no restriction on the form of the rows and columns that do not exhibit a network structure.

Preliminary computational results are reported for an all-FORTRAN implementation of the simplex/SON algorithm called NET/LP. The test problems are real-world models of physical distribution and scheduling systems. NET/LP has solved problems with 6200 rows and 22,000 columns in less than 3 minutes, counting all I/O, on an AMDAHL V-6 with a FORTRAN H compiler.

This research was partially supported by FEA contract CR-03-70128-00 with Analysis, Research, and Computation, Inc., and by ONR Projects NR047-172 and NR047-021 with the Center for Cybernetic Studies, The University of Texas at Austin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ali, R. Helgason, J. Kennington and H. Lall, “Solving multi-commodity network flow problems”, Technical Report IEOR 77015, Southern Methodist University (1977).

    Google Scholar 

  2. Analysis, Research, and Computation, Inc., “Development and computational testing on a capacitated primal simplex transshipment code”, ARC Technical Research Report, Austin, TX.

    Google Scholar 

  3. A.A. Assad, “Multicommodity network flows—Computational experience”, Working Paper No. OR 058-76, Massachusetts Institute of Technology (1976).

    Google Scholar 

  4. M. D. Bakes, “Solution for special linear programming problems with additional constraints”, Operational Research Quarterly 17 (4)(1966) 425–445.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Barr, F. Glover and D. Klingman, “Enhancements of spanning tree labeling procedures for network optimization”, INFOR 17 (1) (1979).

    Google Scholar 

    Google Scholar 

  6. R. Barr, F. Glover and D. Klingman, “The alternating basis algorithm for assignment problems”, Mathematical Programming 13 (1977) 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. M. Bennett, “An approach to some structured linear programming problems”, Operations Research 14 (1966) 636–645.

    Article  MATH  Google Scholar 

  8. G. Bradley, G. Brown and G. Graves, “Design and implementation of large-scale primal transshipment algorithms”, Management Science 24 (1977) 1–35.

    Article  MATH  Google Scholar 

  9. A. Charnes and W. Cooper Management models and industrial applications of linear programming, Vols. I and II, Wiley, New York, 1961).

    MATH  Google Scholar 

  10. A. Charnes, F. Glover, D. Karney, D. Klingman and J. Stutz, “Past, present and future of large-scale transshipment computer codes and applications”, Computers and Operations Research 2 (1975) 71–81.

    Article  Google Scholar 

  11. H. Chen and C. G. DeWald, “A generalized chain labeling algorithm for solving multicommodity flow problems”, Computers and Operations Research 1 (1974) 437–465.

    Article  Google Scholar 

  12. J. E. Cremeans, R. A. Smith and G. R. Tyndall, “Optimal multi-commodity network flows with resource allocation”, Naval Research Logistics Quarterly 17 (1970) 269–280.

    Article  MATH  Google Scholar 

  13. J. E. Cremeans and H. S. Weigel, “The multicommodity network flow model revised to include vehicle per time period and node constraints”, Naval Research Logistics Quarterly 19 (1972) 77–89.

    Article  MATH  Google Scholar 

  14. H. Crowder, M. Held and P. Wolfe, “Validation of subgradient optimization”, Mathematical Programming 6 (1974) 62–88.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. B. Dantzig, “Upper bounds, secondary constraints, and block triangularity in linear programming”, Econometrica 23 (1955) 174–183.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. B. Dantzig and R. M. Van Slyke, “Generalized upper bounding techniques”, Journal of Computer and System Science 1 (3) (1967) 213–226.

    MATH  Google Scholar 

  17. L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows”, Management Science 5 (1) (1958) 97–101.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Gilsinn and C. Witzgall, “A performance comparison of labeling algorithms for calculating shortest path trees”, NBS Technical Note 772, U.S. Department of Commerce (1973).

    Google Scholar 

  19. F. Glover, “Compact LP bases for a class of IP problems”, Mathematical Programming 12 (1977) 102–109.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Glover, J. Hultz and D. Klingman, “Improved computer-based planning techniques”, Interfaces, 8 (4) (1978) 16–25.

    Article  Google Scholar 

  21. F. Glover, D. Karney and D. Klingman, “Implementation and computational study on start procedures and basis change criteria for a primal network code”, Networks 4 (3)(1974) 191–212.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Glover, D. Karney, D. Klingman and R. Russell, “Solving singly constrained transshipment problems”, Transportation Science 12 (4) (1978).

    Google Scholar 

    Google Scholar 

  23. F. Glover and D. Klingman, “Capsule view of future developments on large-scale network and network-related problems”, Research Report CCS 238, Center for Cybernetic Studies, The University of Texas at Austin (1975).

    Google Scholar 

  24. F. Glover and D. Klingman, “Finding minimum weight node order constrained spanning trees”, In: B. Roy, ed. Combinatorial Programming: Methods and Applications (D. Reidel Publishing Co., Dordrecht, Holland, 1975) pp. 60–71.

    Google Scholar 

  25. G. W. Graves and R. D. McBride, “The factorization approach to large-scale linear programming”, Mathematical Programming, 10 (1) (1976) 91–111.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. J. Greenberg and R. P. O’Neill, “A computational perspective of PIES”, Supply and Integration Analysis Division, Federal Energy Administration (1977).

    Google Scholar 

  27. M. D. Grigoriadis and K. Ritter, “A decomposition method for structured linear and nonlinear programs”, Journal of Computer and System Sciences 3 (1969) 335–360.

    MATH  MathSciNet  Google Scholar 

  28. J. K. Hartman and L. S. Lasdon, “A generalized upper bounding method for doubly compled linear programs”, Naval Research Logistics Quarterly 17 (4) (1970) 411–429.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. K. Hartman and L. S. Lasdon, “A generalized upper bounding algorithm for multicommodity network flow problems”, Networks 1 (1972) 333–354.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. R. G. Heesterman, “Special simplex algorithm for multisector problems”, Numerische Mathematik 12 (1968) 288–306.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Helgason and J. Kennington, “A product form representation of the inverse of a multicommodity cycle matrix”, Technical Report IEOR 76003, Southern Methodist University (1976).

    Google Scholar 

  32. R. Helgason, J. Kennington and J. Lall, “Primal simplex netowrk codes: State-of-the-art implementation technology”, Technical Report IEOR 76014, Department of Industrial Engineering and Operations Research, Southern Methodist University (1976).

    Google Scholar 

  33. J. Hultz and D. Klingman, “Solving Singularly constrained generalized network problems”, Applied Mathematics and Optimization 4 (1978) 103–119.

    MATH  MathSciNet  Google Scholar 

  34. J. Hultz and D. Klingman, “Solving constrained generalized network problems”, Research Report CCS 257, Center for Cybernetic Studies, The University of Texas at Austin (1976).

    Google Scholar 

  35. R. N. Kaul, “An extension of generalized upper bounded techniques for linear programming”, ORC 65-27, University of California, Berkeley, CA (1965).

    Google Scholar 

  36. J. Kennington and M. Shalaby, “An effective subgradient procedure for minimal cost multicommodity flow problems”, Technical Report IEOR 75010, Department of Industrial Engineering and Operations Research, Southern Methodist University (1976).

    Google Scholar 

  37. D. Klingman and R. Russell, “On solving constrained transportation problems”, Operations Research 23 (1) (1975) 91–107.

    Article  MATH  MathSciNet  Google Scholar 

  38. S. F. Maier, “A compact inverse scheme applied to a multicommodity network with resource constraints”, Technical Report No. 71-8, Operations Research House, Stanford University (1971).

    Google Scholar 

  39. R. D. McBride, “Factorization in large-scale linear programming”, Working Paper No. 200, University of California (Los Angeles, CA, 1973).

    Google Scholar 

  40. R. Saigal, “Multicommodity flows in directed networks”, ORC Report 66-24, Operations Research Center, University of California, Berkeley, CA (1966)

    Google Scholar 

  41. R. Saigal, “Multicommodity flows in directed networks”, Technical Report No. ORC 67-38, Operations Research Center, University of California, Berkeley, CA (1967).

    Google Scholar 

  42. M. Sakarovitch, “The multi-commodity maximum flow problem”, Technical Report No. ORC 66-25, Operations Research Center, University of California, Berkeley, CA (1966).

    Google Scholar 

  43. L. Schrage, “Implicit representation of generalized variable upper bounds in linear programming”, Mathematical Programming 14 (1978) 11–20.

    Article  MATH  MathSciNet  Google Scholar 

  44. L. Schrage, “Implicit representation of variable upper bounds in linear programs”, Mathematical Programming Study 4 (1975) 118–132.

    MathSciNet  Google Scholar 

  45. V. Srinivasan and G. Thompson, “Accelerated algorithms for labeling and relabeling of trees with applications for distribution problems”, JACM 19 (4) (1972) 712–726.

    Article  MATH  Google Scholar 

  46. C. Swoveland, “Decomposition algorithms for the multi-commodity distribution problem”, Working Paper No. 184. Western Management Science Institute, University of California, Los Angeles, CA (1971).

    Google Scholar 

  47. C. Swoveland, “A two-stage decomposition algorithm for a generalized multi-commodity flow problem”, INFOR 11 (3) (1973) (1973) 232–244.

    MATH  MathSciNet  Google Scholar 

  48. J. A. Tomlin, “Minimum-cost multicommodity network flows”, Operations Research 14 (1) (1966) 45–51.

    Article  Google Scholar 

  49. J. A. Tomlin, “Mathematical programming models for traffic network problems”, Unpublished Dissertation. Department of Mathematics, University of Adelaide, Australia (1967).

    Google Scholar 

  50. D.W. Webber and W.W. White, “An algorithm for solving large structured linear programming problems”, IBM New York Scientific Center Report No. 320-2946 (1968).

    Google Scholar 

  51. R. D. Wollmer, “Multicommodity networks with resource constraints: The generalized multicommodity flow problem”, Networks 1 (1972) 245–263.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Klingman J. M. Mulvey

Rights and permissions

Reprints and permissions

Copyright information

© 1981 The Mathematical Programming Society

About this chapter

Cite this chapter

Glover, F., Klingman, D. (1981). The simplex SON algorithm for LP/embedded network problems. In: Klingman, D., Mulvey, J.M. (eds) Network Models and Associated Applications. Mathematical Programming Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120942

Download citation

  • DOI: https://doi.org/10.1007/BFb0120942

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00807-8

  • Online ISBN: 978-3-642-00808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics