Skip to main content

Traffic scheduling via Benders decomposition

  • Chapter
  • First Online:
Network Models and Associated Applications

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 15))

Abstract

This paper presents a mathematical formulation and a solution technique for a class of traffic scheduling problems. Each problem in this class is characterized by a company-owned fleet of tractors and trailers, a calendar of shipments to be made during a specified scheduling period, and an option to contract any shipment to an independent hauler.

The solution technique uses the Benders decomposition algorithm to determine the routing of each tractor and trailer in the fleet and the shipments to be made by independent haulers. Computational results are summarized, and the application of the model to Kelly-Springfield’s traffic scheduling problem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balas and C. Bergthaller, “Benders method revisited”, Management Sciences Research Report No. 401, Carnegie Mellon University (1977).

    Google Scholar 

  2. R. Barr, F. Glover and D. Klingman, “The alternating basis algorithm for assignment problems”, Mathematical Programming 13 (1977) 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems”, Numerische Mathematik 4 (1962) 238–252.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. H. Bradley, G. G. Brown and G. W. Graves, “Design and implementation of large-scale primal transhipment algorithms”, Management Science 24 (1977) 1–34.

    Article  MATH  Google Scholar 

  5. P. Camion, “Characterization of totally unimodular matrices”, Proceedings of the American Mathematical Society 16 (1965) 1068–1073.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. B. Dantzig and D. R. Fulkerson, “Minimizing the number of tankers to meet a fixed schedule”, Naval Research Logistics Quarterly 1 (1954) 217–222.

    Article  Google Scholar 

  7. G. B. Dantzig and P. Wolfe, “The decomposition of mathematical programming problems”, Operations Research 8 (1960) 101–111.

    Article  MATH  Google Scholar 

  8. L. R. Ford, Jr. and D. R. Fulkerson, Flows in networks (Princeton University Press, Princeton, NJ, 1962).

    MATH  Google Scholar 

  9. R. S. Garfinkel and G. L. Nemhauser” Integer programming, (Wiley, New York, 1972).

    MATH  Google Scholar 

  10. A. M. Geoffrion and G. W. Graves, “Multicommodity distribution system design by Benders decomposition”, Management Science 20 (1974) 822–844.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. M. Geoffrion and R. E. Marsten, “Integer programming algorithms: A framework and state-of-the-art survey”, Management Science 18 (1972) 465–491.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Glover, “Surrogate constraints”, Operations Research 16 (1968) 741–749.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Glover, D. Karney, D. Klingman and A. Napier, “A computational study on start procedures, basis change criteria, and solution algorithms for transportation problems”, Management Science 20 (1974) 793–813.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Hadley, Linear programming (Addison-Wesley, Reading, MA, 1962).

    MATH  Google Scholar 

  15. T.C. Hu, Integer programming and network flows (Addison-Wesley, Reading, MA, 1969).

    MATH  Google Scholar 

  16. D. Klingman and R. Russell, “Solving constrained transportation problems”, Operations Research 23 (1975) 91–106.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. W. Kuhn, “The Hungarian method for the assignment problem”, Naval Research Logistics Quarterly 2 (1955) 83–97.

    Article  MathSciNet  Google Scholar 

  18. R. R. Love, Jr., “Multi-commodity production and distribution scheduling with capacity and changeover restrictions”, Ph.D. Dissertation, The Johns Hopkins University, Baltimore (1974).

    Google Scholar 

  19. J. M. Mulvey, “Testing of a large-scale network optimization program”, Mathematical Programming 15 (1978) 291–314.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Srinivasan and G. Thompson, “Benefit-cost analysis of coding techniques for the primal transportation algorithm”, Journal of the Association for Computing Machinery 20 (1973) 194–213.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Klingman J. M. Mulvey

Rights and permissions

Reprints and permissions

Copyright information

© 1981 The Mathematical Programming Society

About this chapter

Cite this chapter

Love, R.R. (1981). Traffic scheduling via Benders decomposition. In: Klingman, D., Mulvey, J.M. (eds) Network Models and Associated Applications. Mathematical Programming Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120940

Download citation

  • DOI: https://doi.org/10.1007/BFb0120940

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00807-8

  • Online ISBN: 978-3-642-00808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics