Skip to main content

On conditions warranting Φ-subdifferentiability

  • Chapter
  • First Online:
Mathematical Programming at Oberwolfach

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 14))

Abstract

Let X, Y be two normed spaces. A multifunction Γ:Y→2X is called γ-paraconvex (1<γ≤2) if there is a constant C>0 such that for all y 1, y 2∃dom γ and all numbers α, β≥0, α+β=1, the following inclusion holds

$$\alpha \Gamma y_1 + \beta \Gamma y_2 \subset \Gamma (\alpha y_1 + \beta y_2 ) + C\left\| {y_1 - y_2 } \right\|^\gamma B.$$

In the paper properties of γ-paraconvex multifunctions are described. It is proved that if Y is a Hilbert space, Γy is a closed valued 2-paraconvex multifunction, and y 0∃Int dom Γy, x 0∃Γy 0, then Γy is locally Lipschitzian at (x 0, y 0) (i.e. there are a neighbourhood Q of x 0, a neighbourhood W of y 0 and a constant K>0 such that for yW

$$\bar Q \cap \Gamma y \subset \bar Q \cap \Gamma y_0 + K\left\| {y - y_0 } \right\|. B_X .$$

The investigations of γ-paraconvexity were stimulated by investigations of Hölder and Lipschitz differentiability of Lagrangians considered by Dolecki and Kurcyusz in [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Borwein, “Multivalued convexity and optimization: a unified approach to inequality constraints”, Mathematical Programming 13 (1973) 183–199.

    Article  Google Scholar 

  2. D. Case, “Duality: a symmetric approach from the Economist’s vantage point”, Journal of Economic Theory 7 (1974) 272–295.

    Article  Google Scholar 

  3. D. Case, “The Hamiltonian representation of static competitive or efficient allocations”, in: M. Brown, K. Sato and P. Zarembka, eds., Essays in modern capital theory (North-Holland, Amsterdam, 1976).

    Google Scholar 

  4. J.S. Cruceanu, “Duality and optimality for convex extremal problems described by inclusions”, Mathematische Operationsforschung und Statistik, Series Optimization, to appear.

    Google Scholar 

  5. S. Dolecki, “Semicontinuity in constrained optimization”, Control and Cybernetics 7 (1978). [Part 1.1: Metric spaces, No. 2, 6–16; Part I.b; Normed spaces, No. 3, 18–26; Part II: Optimization, No. 4, 51–68.]

    MathSciNet  Google Scholar 

  6. S. Dolecki, “Abstract study of optimality condition”, Journal of Mathematical Analysis and Applications, 73 (1980) 24–28.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Dolecki, “A general theory of necessary optimality conditions”, Journal of Mathematical Analysis and Applications, 73 (1980) 24–28.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Dolecki and S. Kurcyusz, “On Φ-convexity in extremal problems”, SIAM Journal on Control and Optimization 16 (1978) 277–300.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Dolecki and S. Rolewicz, “A characterization of semicontinuity-preserving multifunctions”, Journal of Mathematical Analysis and Applications 65 (1978) 26–31.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Dolecki and S. Rolewicz, “Exact penalties for local minima”, SIAM Journal on Control and Optimization 17 (1979) 596–606.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.P. Evans and F.J. Gould, “Stability in nonlinear programming”, Operations Research 11 (1963) 399–417.

    Article  MathSciNet  Google Scholar 

  12. B.M. Pshenichnyi, “Convex multivalued mappings and their conjugates”, in: J. Łoś and M.W. Łoś, eds. Mathematical models in economics (North-Holland, Amsterdam, 1974), pp. 333–349.

    Google Scholar 

  13. H. Radström, “An embedding theorem for spaces of convex sets”, Proceedings of the American Mathematical Society 3 (1952) 165–169.

    Article  MATH  MathSciNet  Google Scholar 

  14. S.M. Robinson, “Regularity and stability for convex multivalued functions”, Mathematics in Operations Research 1 (1976) 223–239.

    Google Scholar 

  15. R.T. Rockafellar, Conjugate duality and optimization (SIAM, Philadelphia, 1974).

    MATH  Google Scholar 

  16. R.T. Rockafellar, “Augmented Lagrange multiplier functions and duality in non-convex programming”, SIAM Journal on Control and Optimization 12 (1974) 268–285.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Rolewicz, “On paraconvex multifunctions”, Proc. III Symp. of Operations Research, Mannheim, Sept. 1978, Operations Research Verfahrem 31 (1979) 539–546.

    MATH  MathSciNet  Google Scholar 

  18. S. Rolewicz, “On γ-paraconvex multifunctions”, Mathematica Japonicae 24 (1979) 293–300.

    MATH  MathSciNet  Google Scholar 

  19. S. Rolewicz, “On intersection of multifunctions”, Mathematische Operationsforschung und Statistik, Series Optimization 11 (1980) 3–11.

    MATH  MathSciNet  Google Scholar 

  20. S. Rolewicz, Funktionalanalysis und Steuerungstheorie (Springer, Berlin, 1976).

    MATH  Google Scholar 

  21. S. Tagawa, “Optimierung mit mengenwertige Abbildungen”, Ph.D Thesis, Univ. Mannheim (1978).

    Google Scholar 

  22. J. Tind and L.A. Wolsey, “A unifying framework for duality theory in mathematical programming”, Discussion paper 7834, Center for Oper. Research and Econometrics, Univ. Cath. Louvain.

    Google Scholar 

  23. C. Urcescu, “Multifunctions with closed convex graph”, Czechoslovak Mathematical Journal 25 (100) (1975) 438–441.

    MathSciNet  Google Scholar 

  24. A. Wierzbicki and St. Kurcyusz, “Projection on a cone, generalized penalty functionals and duality theory for problems with inequality constraints in Hilbert space”, SIAM Journal on Control Optimization 15 (1977) 25–26.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. König B. Korte K. Ritter

Rights and permissions

Reprints and permissions

Copyright information

© 1981 The Mathematical Programming Society

About this chapter

Cite this chapter

Rolewicz, S. (1981). On conditions warranting Φ-subdifferentiability. In: König, H., Korte, B., Ritter, K. (eds) Mathematical Programming at Oberwolfach. Mathematical Programming Studies, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120930

Download citation

  • DOI: https://doi.org/10.1007/BFb0120930

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00805-4

  • Online ISBN: 978-3-642-00806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics