Skip to main content

Optimization of electrical circuits

  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 11))

Abstract

This paper reviews applications of optimization methods in the area of electrical circuit design. It is addressed to engineers in general as well as mathematical programmers. As a consequence, a brief introduction to electrical circuits is presented, including analog, digital and power concepts. Network analysis techniques along with response evaluation and the determination of partial derivatives (useful in gradient methods of optimization) provide the nonelectrical reader with some necessary background. Different types of specifications which may be imposed, for design purposes, on network performance are presented. The approaches by many contributors to optimal circuit design are outlined, concentrating on general methods within the domain of nonlinear programming, nonlinear approximation and nonlinear discrete optimization techniques. A complete section is devoted to recent work in design centering, optimal assignment of manufacturing tolerances and postproduction tuning. The inclusion of model and environmental uncertainties is discussed. Practical examples illustrate the current state of the art. Difficulties facing the design optimizer as well as directions of possible future research are elaborated on. A long but by no means exhaustive list of references is appended.

This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grant A7239.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Abdel-Malek, “A unified treatment of yield analysis, worst-case design and yield optimization”, Ph.D. Thesis, McMaster University (Hamilton, Canada, 1977).

    Google Scholar 

  2. H.L. Abdel-Malek and J. W. Bandler, “Yield estimation for efficient design centering assuming arbitrary statistical distributions”, International Journal of Circuit Theory and Applications 6 (1978) 289–303.

    Article  MATH  Google Scholar 

  3. H.L. Abdel-Malek and J.W. Bandler, “Yield optimization for arbitrary statistical distributions, part I: theory, part II: implementation”, Proc. IEEE Int. Symp. Circuits and Systems (New York, 1978) pp. 664–674.

    Google Scholar 

  4. T. Adielson, “Determination of an optimal power flow by iterative sub-optimizations”, Proc. 4th PSCC (Grenoble, France, 1972) Paper 2.1/9.

    Google Scholar 

  5. O. Alsac and B. Scott, “Optimal load flow with steady-state security”, IEEE Transactions on Power Apparatus and Systems PAS-93 (1974) 745–751.

    Article  Google Scholar 

  6. E. Avenhaus, “On the design of digital filters with coefficients of limited word length”, IEEE Transactions on Audio Electroacoustics AU-20 (1972) 206–212.

    Article  Google Scholar 

  7. E. Avenhaus and W. Schuessler, “On the approximation problem in the design of digital filters with limited wordlength”, Archiv Der Elektrischen Uebertragung 24 (1970) 571–572.

    Google Scholar 

  8. J.W. Bandler, “Optimization methods for computer-aided design”, IEEE Transactions on Microwave Theory and Techniques MTT-17 (1969) 533–552.

    Article  Google Scholar 

  9. J.W. Bandler, “Conditions for a minimax optimum”, IEEE Transactions on Circuit Theory CT-18 (1971) 476–479.

    Article  MathSciNet  Google Scholar 

  10. J.W. Bandler, “Optimization of design tolerances using nonlinear programming”, Journal of Optimization Theory and Applications 14 (1974) 99–114.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.W. Bandler, “Nonlinear optimization of engineering design with emphasis on centering, tolerancing and tuning”, in: A. Wexler, ed., Large engineering systems (Pergamon, Oxford, 1977).

    Google Scholar 

  12. J.W. Bandler, H.L. Abdel-Malek, P.B. Johns and M.R.M. Rizk, “Optimal design via modeling and approximation”, Proc. IEEE Int. Symp. Circuits and Systems (Munich, 1976) pp. 767–770.

    Google Scholar 

  13. J.W. Bandler and H.L. Abdel-Malek, “Modeling and approximation for statistical evaluation and optimization of microwave designs”, Proc. 7th European Microwave Conf. (Copenhagen, 1977) pp. 153–157.

    Google Scholar 

  14. J.W. Bandler and H.L. Abdel-Malek, “Optimal centering, tolerancing and yield determination via updated approximations and cuts” IEEE Transactions on Circuits and Systems CAS-25 (1978) 853–871.

    Article  Google Scholar 

  15. J.W. Bandler and H.L. Abdel-Malek, “Advances in the mathematical programming approach to design centering, tolerancing and tuning”, Proc. Joint Automatic Control Conf. (Philadelphia, PA, 1978) pp. 329–344.

    Google Scholar 

  16. J.W. Bandler, H.L. Abdel-Malek, P. Dalsgaard, Z.S. El-Razaz and M.R.M. Rizk, “Optimization and design centering of active and nonlinear circuits including component tolerances and model uncertainties”, Proc. Int. Symp. Large Engineering Systems (Waterloo, Canada, 1978) pp. 127–132.

    Google Scholar 

  17. J.W. Bandler and B.L. Bardakjian, “Least pth optimization of recursive digital filters”, IEEE Transactions on Audio Electroacoustics AU-21 (1973) 460–470.

    Article  Google Scholar 

  18. J.W. Bandler, B.L. Bardakjian and J.H.K. Chen, “Design of recursive digital filters with optimized word length coefficients”, Computer Aided Design 7 (1975) 151–156.

    Article  Google Scholar 

  19. J.W. Bandler and C. Charalambous, “Practical least pth approximation with extremely large values of p”, 5th Asilomar Conf. on Circuits and Systems Conf. Record (Pacific Grove, CA, 1971) pp. 66–70.

    Google Scholar 

  20. J.W. Bandler and C. Charalambous, “Conditions for minimax approximation obtained from the l p (n)norm”, IEEE Transactions on Automatic Control AC-17 (1972) 257–258.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.W. Bandler and C. Charalambous, “Theory of generalized least pth approximation”, IEEE Transactions on Circuit Theory CT-19 (1972) 287–289.

    Article  Google Scholar 

  22. J.W. Bandler and C. Charalambous, “Practical least pth optimization of networks”, IEEE Transactions on Microwave Theory and Techniques MTT-20 (1972) 834–840.

    Article  Google Scholar 

  23. J.W. Bandler and C. Charalambous, “On conditions for optimality in least pth approximation with p→∞”, Journal of Optimization Theory and Applications 11 (1973) 556–566.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.W. Bandler and C. Charalambous, “Nonlinear programming using minimax techniques”, Journal of Optimization Theory and Applications 13 (1974) 607–619.

    Article  MATH  MathSciNet  Google Scholar 

  25. J.W. Bandler, C. Charalambous and J.H.K. Chen, “MINOPT—an optimization program based on recent minimax results”, IEEE Transactions on Microwave Theory and Techniques MTT-24 (1976) 543.

    Google Scholar 

  26. J.W. Bandler, C. Charalambous, J.H.K. Chen and W.Y. Chu, “New results in the least pth approach to minimax design”, IEEE Transactions on Microwave Theory and Techniques MTT-24 (1976) 116–119.

    Article  Google Scholar 

  27. J.W. Bandler and J.H.K. Chen, “DISOPT—a general program for continuous and discrete nonlinear programming problems”, International Journal of Systems Science 6 (1975) 665–680.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.W. Bandler, J.H.K. Chen, P. Dalsgaard and P.C. Liu, “TOLOPT—a program for optimal, continuous or discrete, design centering and tolerancing”, Report SOC-105, Faculty of Engineering, McMaster University (Hamilton, Canada, 1975).

    Google Scholar 

  29. J.W. Bandler and W.Y. Chu, “Nonlinear programming using least pth optimization with extrapolation”, International Journal of Systems Science 7 (1976) 1239–1248.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.W. Bandler and P.C. Liu, “Automated network design with optimal tolerances”, IEEE Transactions on Circuits and Systems CAS-21 (1974) 219–222.

    Article  Google Scholar 

  31. J.W. Bandler and P.C. Liu, “Some implications of biquadratic functions in the tolerance problem”, IEEE Transactions on Circuits and Systems CAS-22 (1975) 385–390.

    Article  MathSciNet  Google Scholar 

  32. J.W. Bandler, P.C. Liu and J.H.K. Chen, “Worst case network tolerance optimization,” IEEE Transactions on Microwave Theory and Techniques MTT-23 (1975) 630–641.

    Article  Google Scholar 

  33. J.W. Bandler, P.C. Liu and H. Tromp, “A nonlinear programming approach to optimal design centering, tolerancing and tuning”, IEEE Transactions on Circuits and Systems CAS-23 (1976) 155–165.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.W. Bandler, P.C. Liu and H. Tromp, “Efficient, automated design centering and tolerancing”, Proc. IEEE Int. Symp. Circuits and Systems (Munich, 1976) pp. 710–713.

    Google Scholar 

  35. J.W. Bandler, P.C. Liu and H. Tromp, “Integrated approach to microwave design”, IEEE Transactions on Microwave Theory and Techniques MTT-24 (1976) 584–591.

    Article  Google Scholar 

  36. J.W. Bandler and P.A. Macdonald, “Optimization of microwave networks by razor search”, IEEE Transactions on Microwave Theory and Techniques MTT-17 (1969) 552–562.

    Article  Google Scholar 

  37. J.W. Bandler and P.A. Macdonald, “Cascaded noncommensurate transmission-line networks as optimization problems”, IEEE Transactions on Circuit Theory CT-16 (1969) 391–394.

    Article  Google Scholar 

  38. J.W. Bandler, J.R. Popovic and V.K. Jha, “Cascaded network optimization program”, IEEE Transactions on Microwave Theory and Techniques MTT-22 (1974) 300–308.

    Article  Google Scholar 

  39. J.W. Bandler and R.E. Seviora, “Current trends in network optimization”, IEEE Transactions on Microwave Theory and Techniques MTT-18 (1970) 1159–1170.

    Article  Google Scholar 

  40. J.W. Bandler and D. Sinha, “FLOPT4—a program for least pth optimization with extrapolation to minimax solutions”, Report SOC-151, Faculty of Engineering, McMaster University, Hamilton, Canada (1977).

    Google Scholar 

  41. J.W. Bandler and D. Sinha, “DISOPT3—a user-oriented package for nonlinear continuous and discrete optimization problems”, Proc. 21st Midwest Symp. Circuits and Systems (Ames, IA, 1978) pp. 77–83.

    Google Scholar 

  42. J.W. Bandler and T.V. Srinivasan, “Automated minimax system modelling”, International Journal of Systems Science 5 (1974) 1097–1106.

    Article  MATH  Google Scholar 

  43. J.W. Bandler, T.V. Srinivasan and C. Charalambous, “Minimax optimization of networks by grazor search”, IEEE Transactions on Microwave Theory and Techniques MTT-20 (1972) 596–604.

    Article  Google Scholar 

  44. E.M.L. Beale, “On quadratic programming”, Naval Research Logistics Quarterly 27 (1959) 227–243.

    Article  MathSciNet  Google Scholar 

  45. P.W. Becker and F. Jensen, Design of Systems and circuits for maximum reliability or maximum production yield (Polyteknisk Forlag, Lyngby, Denmark, 1974).

    Google Scholar 

  46. M.J. Best, “A feasible conjugate direction method to solve linearly constrained optimization problems” Journal of Optimization Theory and Applications 16 (1975) 25–38.

    Article  MATH  MathSciNet  Google Scholar 

  47. M.J. Best and K. Ritter, “An accelerated conjugate direction method to solve linearly constrained minimization problems”, Report CORR 73-16, University of Waterloo (Waterloo, Canada, 1973).

    Google Scholar 

  48. M.C. Biggs, “Constrained minimisation using recursive quadratic programming: some alternative subproblems”, in: L.C.W. Dixon and G.P. Szego, eds, Towards global optimisation (North-Holland, Amsterdam, 1975).

    Google Scholar 

  49. M.C. Biggs and M.A. Laughton, “Optimal electrical power scheduling”, Mathematical Programming 13 (1977) 167–182.

    Article  MATH  MathSciNet  Google Scholar 

  50. R. Billinton and S.S. Sachdeva, “Real and reactive power optimization by suboptimum techniques”, IEEE Transactions on Power Apparatus and Systems PAS-92 (1973) 950–956.

    Article  Google Scholar 

  51. R. Billinton and S.S. Sachdeva, “The Fletcher-Powell approach for large power system optimization”, Canadian Electrical Eng. J. 1 (2) (1976) 17–23.

    Google Scholar 

  52. F.H. Branin, Jr., “Computer methods of network analysis”, Proceedings of the IEEE 55 (1967) 1787–1801.

    Article  Google Scholar 

  53. F.H. Branin, Jr., “Widely convergent method for finding multiple solutions of simultaneous nonlinear equations”, IBM Journal of Research and Development 16 (5) (1972). *** DIRECT SUPPORT *** A00CW011 00002

    Google Scholar 

    Google Scholar 

  54. F.H. Branin, Jr., “Network sensitivity and noise analysis simplified” IEEE Transactions on Circuit Theory CT-20 (1973) 285–288.

    Google Scholar 

  55. R.K. Brayton, A.J. Hoffman and T.R. Scott, “A theorem on inverses of convex sets of real matrices with application to the worst-case D.C. problem”, IEEE Transactions on Circuits and Systems CAS-24 (1977) 409–415.

    Article  MATH  MathSciNet  Google Scholar 

  56. C.G. Broyden, “A class of methods for solving nonlinear simultaneous equations”, Mathematics of Computation 19 (1965) 577–593.

    Article  MATH  MathSciNet  Google Scholar 

  57. E.M. Butler, “Realistic design using large-change sensitivities and performance contours”, IEEE Transactions on Circuit Theory CT-18 (1971) 58–66.

    Article  Google Scholar 

  58. E.M. Butler, “Large change sensitivities for statistical design”, in: G. Szentirmai, ed., Computer-Aided Filter Design (IEEE Press, New York, 1973).

    Google Scholar 

  59. D.A. Calahan, Computer-Aided Network Design (Revised Edition) (McGraw-Hill, New York, 1972).

    Google Scholar 

  60. J.W. Carpentier, “Differential injections method, a general method for secure and optimal load flows”, Proc. 8th PICA Conf. (Minneapolis, MI, 1973) pp. 255–262.

    Google Scholar 

  61. C. Charalambous, “Nonlinear least pth approximation and nonlinear programming with applications in the design of networks and systems”, Ph.D. Thesis, McMaster University (Hamilton, Canada, 1973).

    Google Scholar 

  62. C. Charalambous, “A unified review of optimization”, IEEE Transactions on Microwave Theory and Techniques MTT-22 (1974) 289–300.

    Article  MathSciNet  Google Scholar 

  63. C. Charalambous, “Minimax design of recursive digital filters”, Computer Aided Design 6 (1974) 73–81.

    Article  Google Scholar 

  64. C. Charalambous, “Discrete optimization”, International Journal of Systems Science 5 (1974) 889–894.

    Article  MATH  MathSciNet  Google Scholar 

  65. C. Charalambous, “A method to overcome the ill-conditioning problem of differentiable penalty functions”, Proc. 18th Midwest Symp. Circuits and Systems (Montreal, 1975) pp. 535–539.

    Google Scholar 

  66. C. Charalambous, “Minimax optimization of recursive digital filters using recent minimax results”, IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-23 (1975) 333–345.

    Article  MathSciNet  Google Scholar 

  67. C. Charalambous, “Nonlinear least pth optimization and nonlinear programming”, Mathematical Programming 12 (1977) 195–225.

    Article  MATH  MathSciNet  Google Scholar 

  68. C. Charalambous, “Acceleration of the least pth algorithm for minimax optimization”, Report 28-0-280677, Dept. of Systems Design, University of Waterloo, Waterloo, Canada (1977).

    Google Scholar 

  69. C. Charalambous, “Some recent advances in nonlinear programming”, Proc. Int. Symp. Large Engineering Systems (Waterloo, Canada, 1978) pp. 133–141.

    Google Scholar 

  70. C. Charalambous and J.W. Bandler, “New algorithms for network optimization”, IEEE Transactions on Microwave Theory and Techniques MTT-21 (1973) 815–818.

    Article  Google Scholar 

  71. C. Charalambous and J.W. Bandler, “Nonlinear minimax optimization as a sequence of least pth optimization with finite values of p”, International Journal of Systems Science 7 (1976) 377–391.

    Article  MATH  MathSciNet  Google Scholar 

  72. C. Charalambous and M.J. Best, “Optimization of recursive digital filters with finite word lengths”, IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-22 (1974) 424–431.

    Article  Google Scholar 

  73. C. Charalambous and A.R. Conn, “Optimization of microwave networks”, IEEE Transactions on Microwave Theory and Techniques MTT-23 (1975) 834–838.

    Article  Google Scholar 

  74. C. Charalambous and A.R. Conn, “An efficient method to solve the minimax problem directly”, SIAM Journal on Numerical Analysis 15 (1978) 162–187.

    Article  MATH  MathSciNet  Google Scholar 

  75. A. Charnes and W.W. Cooper, “Chance-constrained programming”, Management Science 6 (1959) 73–80.

    Article  MATH  MathSciNet  Google Scholar 

  76. K.S. Chao, D.K. Liu and C.T. Pan, “A systematic search method for obtaining multiple solutions of simultaneous nonlinear equations”, IEEE Transactions on Circuits and Systems CAS-22 (1975) 748–753.

    Article  MathSciNet  Google Scholar 

  77. E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York 1966).

    MATH  Google Scholar 

  78. W.Y. Chu, “Extrapolation in least pth approximation and nonlinear programming”, M.Eng. Thesis, McMaster University (Hamilton, Canada, 1974).

    Google Scholar 

  79. L.O. Chua, “Efficient computer algorithms for piecewise-linear analysis of resistive nonlinear networks”, IEEE Transactions on Circuit Theory CT-18 (1971) 73–85.

    Article  Google Scholar 

  80. L.O. Chua and A. Ushida, “A switching-parameter algorithm for finding multiple solutions of nonlinear resistive circuits”, International Journal of Circuit Theory and Applications 4 (1976) 215–239.

    Article  MATH  Google Scholar 

  81. L.O. Chua and P.M. Lin, Computer-aided analysis of electronic circuits (Prentice-Hall, Englewood Cliffs, NJ, 1975).

    MATH  Google Scholar 

  82. R.J. Dakin, “A tree-search algorithm for mixed integer programming problems”, The Computer Journal 8 (1966) 250–255.

    Article  MathSciNet  Google Scholar 

  83. A.G. Deczky. “Synthesis of recursive digital filters using the minimum p-error criterion”, IEEE Transactions on Audio Electroacoustics AU-20 (1972) 257–263.

    Article  Google Scholar 

  84. A.G. Deczky, “Equiripple and minimax (Chebyshev) approximation for recursive digital filters”, IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-22 (1974) 98–111.

    Article  MathSciNet  Google Scholar 

  85. V.F. Dem'yanov and V.N. Malozemov, Introduction to Minimax (Wiley, New York, 1972).

    Google Scholar 

  86. S.W. Director, “LU factorization in network sensitivity computations”, IEEE Transactions on Circuit Theory CT-18 (1971) 184–185.

    Article  Google Scholar 

  87. S.W. Director and G.D. Hachtel, “The simplicial approximation approach to design centering”, IEEE Transactions on Circuits and Systems CAS-24 (1977) 363–372.

    Article  MATH  MathSciNet  Google Scholar 

  88. S.W. Director, G.D. Hachtel and L.M. Vidigal, “Computationally efficient yield estimation procedures based on simplicial approximation”, IEEE Transactions on Circuits and Systems CAS-25 (1978) 121–130.

    Article  MATH  MathSciNet  Google Scholar 

  89. S.W. Director and R.A. Rohrer, “Generalized adjoint network and network sensitivities”, IEEE Transactions on Circuit Theory CT-16 (1969) 318–323.

    Article  Google Scholar 

  90. S.W. Director and R.A. Rohrer, “Automated network design: The frequency domain case”, IEEE Transactions on Circuit Theory CT-16 (1969) 330–337.

    Article  Google Scholar 

  91. H.W. Dommel and W.F. Tinney, “Optimal power flow solutions”, IEEE Transactions on Power Apparatus and Systems PAS-87 (1968) 1866–1876.

    Article  Google Scholar 

  92. I.S. Duff, “A survey of sparse matrix research”, Proceedings of the IEEE 65 (1977) 500–535.

    Article  Google Scholar 

  93. S.R.K. Dutta and M. Vidyasagar, “New algorithms for constrained minimax optimization”, Mathematical Programming 13 (1977) 140–155.

    Article  MATH  MathSciNet  Google Scholar 

  94. O. Einarsson, “Minimax optimization by algorithms employing modified Lagrangians”, IEEE Transactions on Microwave Theory and Techniques MTT-23 (1975) 838–841.

    Article  Google Scholar 

  95. N.J. Elias, “New statistical methods for assigning device tolerances”, Proc IEEE Int. Symp. Circuits and Systems (Newton, MA, 1975) pp. 329–332.

    Google Scholar 

  96. A.V. Fiacco and G.P. McCormick, Nonlinear programming sequential unconstrained minimization techniques (Wiley, New York, 1968).

    MATH  Google Scholar 

  97. R. Fletcher, “FORTRAN subroutine for minimization by quasi-Newton methods”, Report AERE-R7125. Atomic Energy Research Establishment (Harwell, England, 1972).

    Google Scholar 

  98. R. Fletcher and M.J.D. Powell, “A rapidly convergent descent method for minimization”, The Computer Journal 6 (1963) 163–168.

    MATH  MathSciNet  Google Scholar 

  99. C.R. Gagnon, R.H. Hicks, S.L.S. Jacoby and J.S. Kowalik, “A nonlinear programming approach to a very large hydroelectric system optimization”, Mathematical Programming 6 (1974) 28–41.

    Article  MATH  MathSciNet  Google Scholar 

  100. C.W. Gear, “The automatic integration of differential equations”, Communications of the Association for Computing Machinery 14 (1971) 176–179.

    MATH  MathSciNet  Google Scholar 

  101. K. Geher, Theory of network tolerances (Akademiai Kiado, Budapest, Hungary, 1971).

    Google Scholar 

  102. B. Gold and C. Rader, Digital processing of signals (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  103. G.D. Hachtel, R.K. Brayton and F.G. Gustavson, “The sparse tableau approach to network analysis and design”, IEEE Transactions on Circuit Theory CT-18 (1971) 101–113.

    Article  Google Scholar 

  104. G.D. Hachtel and R.A. Rohrer, “Design and synthesis of switching circuits”, Proceedings of the IEEE 55 (1967) 1864–1876.

    Article  Google Scholar 

  105. M.H. Hamza and A.I.A. Salama, “Tolerance optimization using stochastic programming”. International Journal of Circuit Theory and Applications 6 (1978) 203–207.

    Article  MATH  Google Scholar 

  106. M.D. Hebden, “A bound on the difference between the Chebyshev norm and the Holder norms of a function”, SIAM Journal on Numerical Analysis 8 (1971) 270–277. *** DIRECT SUPPORT *** A00CW011 00003

    Article  MATH  MathSciNet  Google Scholar 

  107. H. D. Helms, “Digital filters with equiripple or minimax responses”, IEEE Transactions on Audio Electroacoustics AU-19 (1971) 87–94.

    Article  Google Scholar 

  108. S.E. Hersom, “Optimisation methods in engineering design”, Tech. Report No. 25, Numerical Optimisation Centre, Hatfield, England (1971).

    Google Scholar 

  109. M.R. Hestenes, “Multiplier and gradient methods”, Journal of Optimization Theory and Applications 4 (1969) 303–320.

    Article  MATH  MathSciNet  Google Scholar 

  110. K. Heuck, “Optimal scheduling of thermal power stations”, Proc. 4th PSCC (Grenoble, France, 1972) Paper 2.1/2.

    Google Scholar 

  111. C.W. Ho, “Time-domain sensitivity computation for networks containing transmission lines”, IEEE Transactions on Circuit Theory CT-18 (1971) 114–122.

    Article  Google Scholar 

  112. R. Hooke and T.A. Jeeves, “Direct search' solution of numerical and statistical problems”, Journal of the Association for Computing Machinery 8 (1961) 212–229.

    MATH  Google Scholar 

  113. T.E. Idleman, F.S. Jenkins, W.J. McCalla and D.O. Pederson, “SLIC-A simulator for linear integrated circuits”, IEEE Journal of Solid-State Circuits SC-6 (1971) 188–204.

    Article  Google Scholar 

  114. Y. Ishizaki and H. Watanabe, “An iterative Chebyshev approximation method for network design”, IEEE Transactions on Circuit Theory CT-15 (1968) 326–336.

    Article  Google Scholar 

  115. F.J. Jaimes and A.H. El-Abiad, “Optimization by a sequence of equality constrained problems—its application to optimal power flows”, Proc. 7th PICA Conf. (Boston, MA, 1971) pp. 219–227.

    Google Scholar 

  116. E.I. Jury, Theory and application of the z-transform method (Wiley, New York, 1964).

    Google Scholar 

  117. B.J. Karafin, “The optimum assignment of component tolerances for electrical networks”, The Bell System Technical Journal 50 (1971) 1225–1242.

    Google Scholar 

  118. B.J. Karafin, “The general component tolerance assignment problem in electrical networks”, Ph.D. Thesis, Univ. of Pennsylvania, Philadelphia, PA (1974).

    Google Scholar 

  119. B.M. Kwak and E.J. Haug Jr., “Optimum design in the presence of parametric uncertainty”, Journal of Optimization Theory and Applications 19 (1976) 527–546.

    Article  MATH  MathSciNet  Google Scholar 

  120. L.S. Lasdon, D.F. Suchman and A.D. Waren, “Nonlinear programming applied to linear array design”, Journal of the Acoustical Society of America 40 (1966) 1197–1200.

    Article  Google Scholar 

  121. L.S. Lasdon and A.D. Waren, “Optimal design of filters with bounded, lossy elements”, IEEE Transactions on Circuit Theory CT-13 (1966) 175–187.

    Google Scholar 

  122. L.S. Lasdon, A.D. Waren and D. Suchman, “Optimal design of acoustic sonar transducer arrays”, Technical Memorandum No. 326, Dept. of Operations Research, School of Management, Case Western Reserve University (Cleveland, OH, 1973).

    Google Scholar 

  123. K. Levenberg, “A method for the solution of certain nonlinear problems in least squares”, Quarterly of Applied Mathematics 2 (1944) 164–168.

    MATH  MathSciNet  Google Scholar 

  124. P.C. Liu, “A theory for optimal worst-case design embodying centering, tolerancing and tuning, with circuit applications”, Ph.D. Thesis, McMaster University (Hamilton, Canada, 1975).

    Google Scholar 

  125. F.A. Lootsma, “Logarithmic programming: a method of solving nonlinear-programming problems”, Philips Research Reports 22 (1967) 329–344.

    MATH  Google Scholar 

  126. K. Madsen, O. Nielsen, H. Schjaer-Jacobsen and L. Thrane, “Efficient minimax design of networks without using derivatives”, IEEE Transactions on Microwave Theory and Techniques MTT-23 (1975) 803–809.

    Article  Google Scholar 

  127. K. Madsen and H. Schjaer-Jacobsen, “Singularities in minimax optimization of networks”, IEEE Transactions on Circuits and Systems CAS-23 (1976) 456–460.

    Article  MATH  MathSciNet  Google Scholar 

  128. K. Madsen, H. Schjaer-Jacobsen and J. Voldby, “Automated minimax design of networks”, IEEE Transactions on Circuits and Systems CAS-22 (1975) 791–796.

    Article  Google Scholar 

  129. K. Madsen and H. Schjaer-Jacobsen, “Linearly constrained minimax optimization”, Mathematical Programming 14 (1978) 208–223.

    Article  MATH  MathSciNet  Google Scholar 

  130. K. Madsen and H. Schjaer-Jacobsen, “Algorithms for worst case tolerance optimization”, Report NI-78-05, Institute for Numerical Analysis, Technical University of Denmark (Lyngby, Denmark, 1978).

    Google Scholar 

  131. K. Madsen and H. Schjaer-Jacobsen, “New algorithms for worst case tolerance optimization”, Proc. IEEE Int. Symp. Circuits and Systems (New York, 1978) pp. 681–685.

    Google Scholar 

  132. D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the Society of Industrial and Applied Mathematics 11 (1963) 431–441.

    Article  MATH  MathSciNet  Google Scholar 

  133. R.M. Mersereau, D.B. Harris and H.S. Hersey, “An efficient algorithm for the design of equiripple two-dimensional FIR digital filters”, Proc. IEEE Int. Symp. Circuits and Systems (Newton, MA, 1975) pp. 443–446.

    Google Scholar 

  134. D.D. Morrison, “Optimization by least squares”, SIAM Journal on Numerical Analysis 5 (1968) 83–88.

    Article  MATH  MathSciNet  Google Scholar 

  135. H. Nicholson and M.J.H. Sterling, “Optimum dispatch of active and reactive generation by quadratic programming”, IEEE Transactions on Power Apparatus and Systems PAS-92 (1973) 644–654.

    Article  Google Scholar 

  136. A.V. Oppenheim and R.W. Schafer, Digital signal processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).

    MATH  Google Scholar 

  137. S.R. Parker, “Sensitivity: old questions, some new answers”, IEEE Transactions on Circuit Theory CT-18 (1971) 27–35.

    Article  Google Scholar 

  138. A. Peled and B. Liu, Digital signal processing theory, design and implementation, (Wiley, New York, 1976).

    Google Scholar 

  139. J. Peschon, D.W. Bree and L.P. Hajdu, “Optimal solutions involving system security”, Proc. 7th PICA Conf. (Boston, MA, 1971) pp. 210–218.

    Google Scholar 

  140. J.F. Pinel “Tolerance assignment and network alignment of linear networks in the frequency domain”, IEEE Short Course on Computer-aided Network Design 73-SC-06 (1973) 17–25.

    Google Scholar 

  141. J.F. Pinel and K.A. Roberts, “Tolerance assignment in linear networks using nonlinear programming”, IEEE Transactions on Circuit Theory CT-19 (1972) 475–479.

    Article  Google Scholar 

  142. J.F. Pinel, K.A. Roberts and K. Singhal, “Tolerance assignment in network design”, Proc. IEEE Int. Symp. Circuits and Systems (Newton, MA, 1975) pp. 317–320.

    Google Scholar 

  143. E. Polak and A. Sangiovanni-Vincentelli, “An algorithm for design centering, tolerancing and tuning (DCTT)”, Electronic Research Lab., University of California (Berkeley, 1978).

    Google Scholar 

  144. M.J.D. Powell, “A method for nonlinear constraints in minimization, problems”, in R. Fletcher, ed., Optimization (Academic Press, New York, 1969).

    Google Scholar 

  145. L.R. Rabiner, “Techniques for designing finite-duration impulse-response digital filters”, IEEE Transactions on Communication Technology COM-19 (1971) 188–195.

    Article  Google Scholar 

  146. L.R. Rabiner, J.H. McClellan and T.W. Parks, “FIR digital filter design techniques using weighted Chebyshev approximation”, Proceedings of the IEEE 63 (1975) 595–610.

    Article  Google Scholar 

  147. G.F. Reid and L. Hasdorff, “Economic dispatch using quadratic programming”, IEEE Transactions on Power Apparatus and Systems PAS-92 (1973) 2015–2023.

    Article  Google Scholar 

  148. R.T. Rockafellar, “Augmented Lagrange multiplier functions and duality in non-convex programming”, SIAM Journal on Control 12 (1974) 268–285.

    Article  MATH  MathSciNet  Google Scholar 

  149. A.M. Sasson, “Nonlinear programming solutions for load-flows, minimum loss, and economic dispatching problems”, IEEE Transactions on Power Apparatus and Systems PAS-88 (1969) 399–409.

    Article  Google Scholar 

  150. A.M. Sasson, “Combined use of the Powell and Fletcher-Powell nonlinear programming methods for optimal load flows”, IEEE Transactions on Power Apparatus and Systems PAS-88 (1969) 1530–1537.

    Article  Google Scholar 

  151. A.M. Sasson and H.M. Merrill, “Some applications of optimization techniques to power systems problems”, Proceedings of the IEEE 62 (1974) 959–972.

    Article  Google Scholar 

  152. A.M. Sasson, F. Viloria and F. Aboytes, “Optimal load flow solution using the Hessian matrix”, IEEE Transactions on Power Apparatus and Systems PAS-92 (1973) 31–41.

    Article  Google Scholar 

  153. A.K. Seth, “Electrical network tolerance optimization”, Ph.D. Thesis, University of Waterloo (Waterloo, Canada, 1972).

    Google Scholar 

  154. W. L. Snyder, Jr., and A.M. Sasson, “Security load flow employing a modified decoupled hessian technique”, Proc. 10th PICA Conf. (Toronto, 1977) pp. 442–450.

    Google Scholar 

  155. T.V. Srinivasan and J.W. Bandler, “Practical application of a penalty function approach to constrained minimax optimization”, Computer Aided Design 7 (1975) 221–224.

    Article  Google Scholar 

  156. G.W. Stagg and A.H. El-Abiad, Computer methods in power system analysis (McGraw-Hill. New York, 1968).

    Google Scholar 

  157. K. Steiglitz, “Computer-aided design of recursive digital filters”, IEEE Transactions on Audio Electroacoustics AU-18 (1970) 123–129.

    Article  Google Scholar 

  158. K. Steiglitz, “Designing short-word recursive digital filters,” Proc. 9th Allerton Conf. Circuit and System Theory (Urbana, IL, 1971) pp. 778–788.

    Google Scholar 

  159. B. Stott, “Review of load-flow calculation methods”, Proceedings of the IEEE 62 (1974) 916–929.

    Article  Google Scholar 

  160. M. Suk and S.K. Mitra, “Computer-aided design of digital filters with finite word length”, IEEE Transactions on Audio Electroacoustics AU-20 (1972) 356–363.

    Article  Google Scholar 

  161. G.C. Temes and D.A. Calahan, “Computer-aided network optimization the state-of-the-art”, Proceedings of the IEEE 55 (1967) 1832–1863.

    Article  Google Scholar 

  162. G.C. Temes and D.Y.F. Zai, “Least pth approximation”, IEEE Transactions on Circuit Theory CT-16 (1969) 235–237.

    Article  Google Scholar 

  163. H. Tromp, “The generalized tolerance problem and worst case search”, Conf. Computer-aided Design of Electronic and Microwave Circuits and Systems (Hull, England, 1977) pp 72–77.

    Google Scholar 

  164. H. Tromp, “Generalized worst case design, with applications to microwave networks”, Doctoral Thesis (in Dutch). Faculty of Engineering, University of Gent (Gent, Belgium, 1978).

    Google Scholar 

  165. A.D. Waren, L.S. Lasdon, L.B. Stotts and D.C. McCall, “Recent developments in nonlinear optimization and their use in engineering design”, in: A. Wexler, ed. Large Engineering Systems (Pergamon, Oxford, England, 1977).

    Google Scholar 

  166. A.D. Waren, L.S. Lasdon and D.F. Suchman, “Optimization in engineering design”, Proceedings of the IEEE 55 (1967) 1885–1897.

    Article  Google Scholar 

  167. P. Wolfe, “The simplex method for quadratic programming”, Econometrica 27 (1959).

    Google Scholar 

  168. W.I. Zangwill, “Nonlinear programming via penalty functions,” Management Science 13 (1967) 344–358. *** DIRECT SUPPORT *** A00CW011 00004

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Avriel R. S. Dembo

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The mathematical programming society

About this chapter

Cite this chapter

Bandler, J.W., Rizk, M.R.M. (1979). Optimization of electrical circuits. In: Avriel, M., Dembo, R.S. (eds) Engineering Optimization. Mathematical Programming Studies, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120856

Download citation

  • DOI: https://doi.org/10.1007/BFb0120856

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00799-6

  • Online ISBN: 978-3-642-00800-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics