Skip to main content

Limit theorems and diffusion approximations for density dependent Markov chains

  • Modeling
  • Chapter
  • First Online:

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 5))

Abstract

One parameter families of Markov chains X A (t) with infinitesimal parameters given by q A k,k+l =Af(A −1 k,l) k, l ∈Z′ l≠0 are considered. Under appropriate conditions X A (t)/A converges in probability as A→∞ to a solution of the system of ordinary differential equations, \(\dot X = F(X)\)where F(x)=σt lf(x, l). Limit theorems for these families are reviewed including work of Norman, Barbour and the author. A natural diffusion approximation is discussed.

Families of this type include the usual epidemic model, models in chemistry, genetics and in many other areas of application.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew D. Barbour, “On a functional central limit theorem for Markov population processes”, Advances in Applied Probability 6 (1974) 21–39.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.S. Bartlett, Stochastic population models in ecology and epidemiology (Methuen London, 1960).

    MATH  Google Scholar 

  3. A.T. Bharucha-Reid, Elements of the theory of Markov processes and their application, (McGraw-Hill, New York, 1960).

    Google Scholar 

  4. William Feller, “Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in Wahrscheinlichkeits theoretischen Behandlung”, Acta Biotheoretica 5 (1939) 1–40.

    Article  Google Scholar 

  5. William Feller, “Diffusion processes in genetics”, in Proceedings of the second Berkeley symposium on mathematical statistics and probability, pp. 227–246.

    Google Scholar 

  6. Xavier Fernique, “Intégrabilité des vecteurs gaussiens”, Comptes Rendus Hebdomadiares des Séances de Académie des Sciences, Paris 270 (1970) 1698–1699.

    MATH  MathSciNet  Google Scholar 

  7. J. Komlós, P. Major and G. Tusnády. “An approximation of partial sums of independent random variables and the sample distribution function, I”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32 (1975) 111–131.

    Article  MATH  Google Scholar 

  8. Thomas G. Kurtz, “Solutions of ordinary differential equations as limits of pure jump Markov processes”, Journal of Applied Probability 7 (1970) 49–58.

    Article  MATH  MathSciNet  Google Scholar 

  9. Thomas G. Kurtz, “Limit theorems for sequences of jump Markov processes approximating ordinary differential processes”, Journal of Applied Probability 8 (1971) 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  10. Thomas G. Kurtz, “The relationship between stochastic and deterministic models for chemical reactions”, The Journal of Chemical Physics 57 (1972) 2976–2978.

    Article  Google Scholar 

  11. H.P. McKean, Jr. Stochastic integrals (Academic Press, New York, 1969).

    MATH  Google Scholar 

  12. M. Frank Norman, Markov processes and learning models (Academic Press, New York, 1972).

    MATH  Google Scholar 

  13. M. Frank Norman, “A central limit theorem for Markov processes that move by small steps”, The Annals of Probability 2 (1974) 1065–1074.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Oppenheim, K.E. Schuler, and G.H. Weiss “Stochastic and deterministic formulation of chemical rate equations”, The Journal of Chemical Physics 50 (1969) 460–466.

    Article  Google Scholar 

  15. P. Revesz, “On strong approximation of the multidimensional empirical process”, to appear.

    Google Scholar 

  16. B. Rosén, “On the central limit theorem for sums of dependent random variables” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 7 (1967) 48–82.

    Article  MATH  Google Scholar 

  17. J.S. Frank Wang, “Limit theorems for age and density dependent stochastic population models”, The Journal of Mathematical Biology 2 (1975) 373–400.

    Article  MATH  Google Scholar 

  18. J.S. Frank Wang, “A central limit theorem for age and density dependent population processes”, to appear.

    Google Scholar 

  19. A.V. Nagaev and A.N. Startsev “The asymptotic analysis of a stochastic model of an epidemic”, Theory of Probability and its Applications, 15 (1970) 98–107.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1976 The Mathematical Programming Society

About this chapter

Cite this chapter

Kurtz, T.G. (1976). Limit theorems and diffusion approximations for density dependent Markov chains. In: Wets, R.J.B. (eds) Stochastic Systems: Modeling, Identification and Optimization, I. Mathematical Programming Studies, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120765

Download citation

  • DOI: https://doi.org/10.1007/BFb0120765

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00783-5

  • Online ISBN: 978-3-642-00784-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics