Skip to main content

Nonanticipativity and L 1-martingales in stochastic optimization problems

  • Optimization
  • Chapter
  • First Online:
Stochastic Systems: Modeling, Identification and Optimization, II

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 6))

Abstract

Necessary and sufficient conditions for optimality are derived for multistage stochastic programs. In particular it is shown that under some standard regularity conditions and a condition of “nonanticipative feasibility”, a system of Lagrange multipliers, characterized by a martingale property, can be associated with the constraints of the problem. Nonanticipative feasibility is expressed in terms of the nonanticipativity of a certain multifunction and is shown to be related to the more familiar concept—in stochastic programming—of relatively complete recourse. It is also shown that this restriction renders possible the justification of the dynamic programming technique.

Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR Grant Number 72-2269

Supported in part by the National Science Foundation under grant MPS 75-07028

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. Rochafellar and R. Wets, “The optimal recourse problem in discrete time: L 1-multipliers for inequality constraints”, SIAM Journal on Control and Optimization, to appear. 0230 0263 V 3

    Google Scholar 

  2. R. Wets, “On the relation between stochastic and deterministic optimization” in: A. Bensoussan and J. L. Lions, eds., Control theory, numerical methods and computer systems modelling. Springer Verlag Lecture Notes in Economics and Mathematical Systems, 107 (Springer, Berlin 1975) pp. 350–361.

    Google Scholar 

  3. R. T. Rockafellar and R. Wets, “Stochastic convex programming: Kuhn-Tucker conditions”, Journal of Mathematical Economics 2 (1975) 349–370.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. D. Yudin, “Duality in multistage stochastic programming” Izvestija Akademii Nauk SSSR, Tekhnicheskaya Kibernetica 6 (1973) 24–31 [in Russian; Engl. transl.: also Engineers Cybernetics 11 (1973) 908–915].

    MathSciNet  Google Scholar 

  5. M. Eisner and P. Olsen, “Duality for stochastic programming interpreted as L. P. in Lp-space” SIAM Journal of Applied Mathematics 28 (1975) 779–792.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Eisner and P. Olsen, “Duality in probabilistic programming”, in: M. Dempster, ed., Stochastic Programming. Proceedings of the 1974 Oxford international conference Academic Press, New York, 1976.

    Google Scholar 

  7. E. B. Dynkin, “Stochastic concave dynamic programming” Matematiĉeskiĉ Sbornik 87 (129) (1972) 490–503 [in Russian; Engl. trans.: Mathematics of the USSR Sbornik 16 (1972) 501–516.

    MathSciNet  Google Scholar 

  8. E. B. Dynkin, “Optimal programs and stimulating prices in stochastic models of economic growth”, in: J. Łoś and M. W. Łoś, eds., Mathematical models in economics. (PWN-Polish Scientific Publishers. Warszawa, 1974) pp. 207–218.

    Google Scholar 

  9. E. B. Dynkin, “Stochastic models of economic development”, in: American Mathematical Society Translations Series 2 (1975).

    Google Scholar 

  10. I. Evstigneev, “Optimal economic planning taking into account of stationary random factors” Doklady Akademii Nauk SSR 206 (1972) 1040–1942; [in Russian; Engl. transl.: Soviet Mathematics Doklady 13 (1972) 1357–1359.

    MathSciNet  Google Scholar 

  11. I. Evstigneev, “Optimal Stochastic Programs and their Stimulating Prices”, in: J. Łoś and M. W. Łoś, eds., Mathematical models in economics (PWN-Polish Scientific Publishers, Warszawa 1974) pp. 219–252.

    Google Scholar 

  12. R. Radner, “Existence of equilibrium of plans, prices, and price expectations in a sequence of markets” Econometrica 40 (1972) 289–303.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Walkup and R. Wets, “Stochastic programs with recourse: special forms”, in: H. W. Kuhn, ed., Proceedings of the Princeton symposium on mathematical programming. (Princeton University Press, Princeton, N.J., 1970) pp. 139–162.

    Google Scholar 

  14. R. T. Rockafellar and R. Wets, “Stochastic convex programming: basic duality”, Pacific Journal of Mathematics, 62 (1976).

    Google Scholar 

  15. R. T. Rockafellar and R. Wets, “Continuous versus measurable recourse in N-stage stochastic programming” Journal of Mathematical Analysis and its Applications 48 (1974) 836–859.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. T. Rockafellar, “Integrals which are convex functionals” Pacific Journal of Mathematics 24 (1968) 525–540.

    MATH  MathSciNet  Google Scholar 

  17. R. T. Rockafellar, “Integrals which are convex functionals, II”, Pacific Journal of Mathematics 39 (1971) 439–469.

    MATH  MathSciNet  Google Scholar 

  18. R. T. Rockafellar, “Measurable dependence of convex sets and functions on parameters”, Journal of Mathematical Analysis and its Applications 28 (1969) 4–25.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. T. Rockafellar, “Convex integral functionals and duality”, in: E. Zarantonello, ed., Contributions to nonlinear functional analysis (Academic Press, New York 1971) pp. 215–236.

    Google Scholar 

  20. R. Wets, “Induced constraints for stochastic optimization problems”, in: A. Balakrishnan, ed., Techniques of optimization (Academic Press, New York, 1972) pp. 433–443.

    Google Scholar 

  21. R. T. Rockafellar and R. Wets, “Stochastic convex programming: relatively complete recourse and induced feasibility”, SIAM Journal on Control and Optimization 14 (1976).

    Google Scholar 

  22. P. Olsen, “When is a multistage stochastic programming problem well-defined”, SIAM Journal on Control and Optimization 14 (1976).

    Google Scholar 

  23. P. Olsen, “Multistage stochastic programming with recourse as mathematical programming in an Lp space”, SIAM Journal on Control and Optimization 14 (1976).

    Google Scholar 

  24. I. V. Evstigneev, “Measurable selection and dynamic programming”, Mathematics of Operations Research 1 (1976).

    Google Scholar 

  25. M. Loève, Probability theory, 3rd Ed, (Van Nostrand Princeton, N.J., 1963).

    MATH  Google Scholar 

  26. R. Wets, “On inf-compact mathematical programs”, in: Conference on optimization techniques, Part 1, Lecture Notes in Computer Science (Springer, Berlin, 1974) pp. 426–436.

    Google Scholar 

  27. R. T. Rockafellar, “Extension of Fenchel’s duality theorem for convex functions”, Duke Mathematics Journal 33 (1966) 81–89.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1976 The Mathematical Programming Society

About this chapter

Cite this chapter

Rockafellar, R.T., Wets, R.JB. (1976). Nonanticipativity and L 1-martingales in stochastic optimization problems. In: Wets, R.J.B. (eds) Stochastic Systems: Modeling, Identification and Optimization, II. Mathematical Programming Studies, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120750

Download citation

  • DOI: https://doi.org/10.1007/BFb0120750

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00785-9

  • Online ISBN: 978-3-642-00786-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics