Skip to main content

Nonlinear control of missiles through a geometric approach

  • Numerical Algorithms
  • Conference paper
  • First Online:
Analysis and Optimization of Systes

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 144))

Abstract

Many theorical studies have been conducted about decoupling and linearization of nonlinear systems. This approach is a means to synthesize the control laws of single-input single-output systems. It is used here for the piloting of nonrolling missiles, of which transverse acceleration is to be controlled. In this paper, it is proved that for this kind of problem, it is possible to associate such a method to simplifications of the model on the one hand and separation of the system into multiple time scale cascade subsystems on the other. Thus, the dimension of the unobservable part can be minimized and the control law is simpler.

The author would like to thank the DRET, which financially supported this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. d’Andréa-Novel. Commande non linéaire des robots. Hermès, Paris, 1988.

    Google Scholar 

  2. D. Claude. Linéarisation par difféomorphisme et immersion des systèmes. In A.V. Balakrishnan and M. Thoma, editors, Lecture Notes in Control and Information Sciences, volume 63, pages 339–351. Springer-Verlag, 1984.

    Google Scholar 

  3. D. Claude. Découplage des systèmes non linéaires, séries génératrices non commutatives et algèbres de lie. Siam J. Control and Optimisation, 24(3): 562–578, May 1986.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Claude. Découplage et linéarisation des systèmes non linéaires par bouclages statiques. Thèse d’état, Université de Paris-Sud—Centre d’Orsay, 17 juin 1986.

    Google Scholar 

  5. E. Freund. The structure of decoupled non-linear systems. Int. J. Control, 21(3):443–450, March 1975.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.W. Grizzle. Local input-output decoupling of discrete-time non-linear systems. Int. J. Control, 43(5):1517–1530, May 1986.

    Article  MATH  MathSciNet  Google Scholar 

  7. I.J. Ha and E.G. Gilbert. A complete characterization of decoupling control laws for a general class of nonlinear systems. IEEE transactions on automatic control, AC-31(9):823–830, September 1986.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Hauser, S. Sastry, and G. Meyer. Nonlinear controller design for flight control systems. In A. Isidori, editor, Preprints of the IFAC Symposium, Capri, Italy, pages 136–141. Pergamon Press, June 14–16 1989.

    Google Scholar 

  9. L.R. Hunt, R. Su, and G. Meyer. Design for multi-input nonlinear systems. In R.W. Brockett, R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Control Theory, pages 268–298. Birkhäuser, 1983.

    Google Scholar 

  10. A. Isidori. Nonlinear control systems: An intoduction. In Lecture Notes in Control and Information Sciences, volume 72. Springer-Verlag, 1985.

    Google Scholar 

  11. A. Isidori and J.W. Grizzle. Fixed modes and nonlinear noninteracting control with stability. IEEE transactions on automatic control, AC-33(10):907–914, October 1988.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Isidori, A.J. Krener, C. Gori-Giorgi, and S. Monaco. Nonlinear decoupling via feedback: a differential geometric approach. IEEE transactions on automatic control, AC-26(2):331–345, April 1981.

    Article  MATH  MathSciNet  Google Scholar 

  13. S.H. Lane and R.F. Stengel. Flight control design using non-linear inverse dynamics. Automatica, 24(4): 471–483, July 1988.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Marino. On the largest feedback linearizable subsystem. Systems and Control Letters, 6(5): 345–351, January 1986.

    Article  MathSciNet  Google Scholar 

  15. P.K.A. Menon, M.E. Badgett, R.A. Walker, and E.L. Duke. Nonlinear flight test trajectory controllers for aircraft. J. Guidance, 10(1):67–72, January–February 1987.

    Article  MATH  Google Scholar 

  16. S. Monaco and D. Normand-Cyrot. Nonlinear systems in discrete time. In M. Fliess and M. Hazewinkel, editors, Algebraic and Geometric Methods in Nonlinear Control Theory, pages 411–430. D. Reidel Publishing Company, 1986.

    Google Scholar 

  17. W.A. Porter. Diagonalization and inverses for non-linear systems. Int. J. Control, 11(1):67–76, 1970.

    Article  MATH  Google Scholar 

  18. S.N. Singh and W.J. Rugh. Decoupling in a class of nonlinear systems by state variable feedback. Trans. ASME J. Dyn. Syst. Meas Contr., 94:323–329, 1972.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Bensoussan J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Harcaut, JP. (1990). Nonlinear control of missiles through a geometric approach. In: Bensoussan, A., Lions, J.L. (eds) Analysis and Optimization of Systes. Lecture Notes in Control and Information Sciences, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120025

Download citation

  • DOI: https://doi.org/10.1007/BFb0120025

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52630-8

  • Online ISBN: 978-3-540-47085-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics