Skip to main content

Structure and assembly of the sarcomeric M Band

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology

Abstract

M bands and Z discs seem to be crucially involved in establishing the strikingly ordered array of thick and thin filaments, respectively. This requires control mechanisms that allow for the sequential assembly of contractile and structural proteins into the sarcomere. In addition, tightly controlled local disassembly processes have to provide a basis for the turnover and remodelling that has been observed (like, for instance, the exchange of developmental stage-specific sarcomere protein isoforms in a working muscle). Previous work has focussed on the characterization of a plethora of contractile and cytoskeletal proteins. More recent results give good reasons to hope that it may be possible to explain the various ultrastructural findings at a molecular level in the future. Likewise, they give a first hint at which signal transduction mechanisms could be involved in the control of the assembly of the supramolecular structure that makes us move.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anversa, P., G. Olivetti, P.-G. Bracchi, and A. V. Loud (1981) Postnatal development of the M-band in rat cardiac myofibrils. Circ Res 48:561–568

    PubMed  CAS  Google Scholar 

  2. Arnold, H., and D. Pette (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem 15:360–366

    PubMed  CAS  Google Scholar 

  3. Auerbach, D., B. Rothen-Rutishauser, S. Bantle, M. Leu, E. Ehler, D. Helfman, and J. C. Perriard (1997) Molecular mechanisms of myofibril assembly in heart. Cell Struct Funct 22:139–146

    PubMed  CAS  Google Scholar 

  4. Ayme-Southgate, A., J. Vigureaux, G. Benian, and M. L. Pardue (1991) Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci USA 88:7973–7977

    PubMed  CAS  Google Scholar 

  5. Bähler, M., T. Wallimann, and H. M. Eppenberger (1985) Myofibrillar Miband proteins represent constituents of native thick filaments, frayed filaments and bare zone assemblages. J Muscle Res Cell Mot 6:783–800

    Google Scholar 

  6. Bantle, S., S. Keller, I. Haussmann, D. Auerbach, E. Perriard, S. Mühlebach, and J.-C. Perriard (1996) Tissue-specific isoforms of chicken myomesin are generated by alternative splicing. J Biol Chem 271:19042–19052

    PubMed  CAS  Google Scholar 

  7. Barjot, C., M.-L. Cotten, C. Goblet, R. G. Whalen, and F. Bacou (1995) Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J Musc Res Cell Mot 16:619–628

    CAS  Google Scholar 

  8. Baskin, R. J., and D. N. Deamer (1970) A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum. J Biol Chem 259:14979–14984

    Google Scholar 

  9. Benian, G. M., J. E. Kiff, N. Neckelmann, D. G. Moerman, and R. H. Waterston (1989) Sequence of an unusually large protein implicated in the regulation of myosin activity in C. elegans. Nature 342:45–50

    PubMed  CAS  Google Scholar 

  10. Bober, E., G. E. Lyons, T. Braun, G. Cossu, M. Buckingham, and H.-H. Arnold (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265

    PubMed  CAS  Google Scholar 

  11. Carlsson, E., B. K. Grove, T. Wallimann, H. M. Eppenberger, and L.-E. Thornell (1990) Myofibrillar M-band proteins in rat skeletal muscles during development. Histochem 95:27–35

    CAS  Google Scholar 

  12. Cohen, I. R., S. Grässel, A. D. Murdoch, and R. V. Iozzo (1993) Structural characterization of the complete human perlecan gene and its promoter. Proc. Natl Acad Sci USA 90:10404–10408

    PubMed  CAS  Google Scholar 

  13. Croop, J., G. Dubyak, Y. Toyama, A. Dlugosz, A. Scarpa, and H. Holtzer (1982) Effects of 12-O-tetradecanoyl-phorbol-13-acetate on myofibril integrity and Ca2+ content in developing myotubes. Dev Biol 89:460–474

    PubMed  CAS  Google Scholar 

  14. Cunningham, B. A., J. J. Hemperly, B. A. Murray, E. A. Prediger, R. Brackenbury, and G. M. Edelman (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806

    PubMed  CAS  Google Scholar 

  15. Dobie, W. M. (1849) Observations on the minute structure and the mode of contraction of voluntary muscle fibers. Ann Mag Nat Hist 3:109

    Google Scholar 

  16. Draper, M. H., and A. J. Hodge (1946) Studies on muscle with the electron microscope: I. The ultrastructure of of toad striated muscle. Austr J Exptl Biol Med Sci 27:465–503

    Google Scholar 

  17. Düsterhöft, S. and D. Pette (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53:25–33

    PubMed  Google Scholar 

  18. Edman, A.-C., J. M. Squire, and M. Sjöström (1988) Fine structure of the Aband in cryo-sections. J Ultrastruct Mol Struct Res 100:1–12

    PubMed  CAS  Google Scholar 

  19. Eppenberger, H. M., D. M. Dawson, and N. O. Kaplan (1967) The comparative enzymology of creatine kinase isoenzymes. J Biol Chem 242:204–209

    PubMed  CAS  Google Scholar 

  20. Eppenberger, H. M., J.-C. Perriard, U. B. Rosenberg, and E. E. Strehler (1981) The Mr 165,000 M-protein myomesin: a specific protein of croo-striated muscle cells. J Cell Biol 89:185–193

    PubMed  CAS  Google Scholar 

  21. Feldman, J. I., and F. E. Stockdale (1991) Skeletal muscle satellite cell diversity: Satellite cells form fibers of different types in cell culture. Dev Biol 143:320–334

    PubMed  CAS  Google Scholar 

  22. Fickett, J. W. (1996) Quantitative discrimination of MEF2 sites. Mol Cell Biol 16:437–441

    PubMed  CAS  Google Scholar 

  23. Freiburg, A., and M. Gautel (1996) A molecular map of the interactions of titin and myosin-binding protein C: implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323

    PubMed  CAS  Google Scholar 

  24. Friedman, D. L., and M. B. Perryman (1991) Compartmentalization of multiple forms of creatine kinase in the distal nephron of the rat kidney. J Biol Chem 266:22404–22410

    PubMed  CAS  Google Scholar 

  25. Fritz-Wolf, K., T. Schnyder, T. Wallimann, and W. Kabsch (1996) Structure of mitochondrial creatine kinase. Nature 381:341–345

    PubMed  CAS  Google Scholar 

  26. Fürst, D. O., and M. Gautel (1995) The anatomy of a molecular giant: How the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J Mol Cell Cardiol 27:951–960

    PubMed  Google Scholar 

  27. Fürst, D. O., R. Nave, M. Osborn, and K. Weber (1989a) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins; an immunoelectron microscopical study on myofibrils. J Cell Biol 94:119–125

    Google Scholar 

  28. Fürst, D. O., M. Osborn, R. Nave, and K. Weber (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy; a map of ten non-repetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    PubMed  Google Scholar 

  29. Fürst, D. O., M. Osborn, and K. Weber (1989b) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    PubMed  Google Scholar 

  30. Fürst, D. O., U. Vinkemeier, and K. Weber (1992) Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full length human cDNA. J Cell Sci 102:769–778

    PubMed  Google Scholar 

  31. Gautel, M., D. Goulding, B. Bullard, K. Weber, and D. O. Fürst (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754

    PubMed  CAS  Google Scholar 

  32. Gautel, M., K. Leonard, and S. Labeit (1993) Phosphorylation of KSP motifs in the C-terminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834

    PubMed  CAS  Google Scholar 

  33. Geisler, N., and K. Weber (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J 1:1649–1656

    PubMed  CAS  Google Scholar 

  34. Grosse, R., E. Spitzer, V. V. Kupriyanov, V. A. Saks, and K. R. H. Repke (1980) Coordinate interplay between (Na+/K+)-ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cells. Biochim Biophys A 603:142–156

    CAS  Google Scholar 

  35. Grove, B. K., L. Cerny, J.-C. Perriard, and H. M. Eppenberger (1985) Myomesin and M-protein: Expression of two M-band proteins in pectoral muscle and heart during development. J Cell Biol 101:1413–1421

    PubMed  CAS  Google Scholar 

  36. Grove, B. K., B. Holmbom, and L.-E. Thornell (1987) Myomesin and M protein: differential expression in embryonic fibers during pectoral muscle development. Differentiation 34:106–114

    PubMed  CAS  Google Scholar 

  37. Grove, B. K., V. Kurer, C. Lehner, T. C. Doetschmann, J.-C. Perriard, and H. M. Eppenberger (1984) A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies. J Cell Biol 98:518–524

    PubMed  CAS  Google Scholar 

  38. Grove, B. K., and L.-E. Thornell (1988) Noncoordinate expression of M band proteins in slow and fast embryonic chick muscles. Muscle & Nerve 11:645–653

    CAS  Google Scholar 

  39. Hall, C. E., M. A. Jakus, and F. O. Schmitt (1946) An investigation of crossstriations and myosin filaments in muscle. Biol Bull 90:32–50

    Google Scholar 

  40. Hartzell, H. C., and W. S. Sale (1985) Structure of C-protein purified from cardiac muscle. J Cell Biol 100:208–215

    PubMed  CAS  Google Scholar 

  41. Heierhorst, J., W. C. Probst, F. S. Vilim, A. Buku, and K. R. Weiss (1994) Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 269:21086–21093

    PubMed  CAS  Google Scholar 

  42. Herasymowych, O. S., R. S. Mani, C. M. Kay, R. D. Bradley, and D. G. Scraba (1980) Ultrastructure studies on the binding of creatine kinase and the 165,000 molecular weight component of the M-band of muscle. J Mol Biol 136:193–198

    PubMed  CAS  Google Scholar 

  43. Hinterberger, T. J., D. A. Sassoon, S. J. Rhodes, and S. F. Konieczny (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156

    PubMed  CAS  Google Scholar 

  44. Holden, H. M., M. Ito, D. J. Hartshorne, and I. Rayment (1992) X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 Å resolution. J Mol Biol 227:840–851

    PubMed  CAS  Google Scholar 

  45. Holness, C. L., and D. L. Simmons (1994) Structural motifs for recognition and adhesion in memebers of the immunoglobulin superfamily. J Cell Sci 107:2065–2070

    PubMed  CAS  Google Scholar 

  46. Hossle, J. P., J. Schlegel, G. Wegmann, M. Wyss, P. Böhlen, H. M. Eppenberger, T. Wallimann, and J.-C. Perriard (1988) Distinct, tissue-specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Comm 151:408–416

    PubMed  CAS  Google Scholar 

  47. Jacobs, H., H. W. Heldt, and M. Klingenberg (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Comm 16:516–521

    PubMed  CAS  Google Scholar 

  48. Jacobus, W. E., and A. L. Lehninger (1973) Creatine kinase of rat heart, mitochondrial coupling of creatine phosphorylation to electron transport. J Biol Chem 248:4803–4810

    PubMed  CAS  Google Scholar 

  49. Kahn, M. A., P. G. Holt, J. O. Knight, J. M. Papadimi, and B. A. Kakulas (1972) Creatine kinase, a histochemical study by gelatin film-lead precipitation technique. Histochem 32:49

    Google Scholar 

  50. Knappeis, G. G., and F. Carlsen (1968) The ultrastructure of the M line in skeletal muscle. J Cell Biol 38:202–211

    PubMed  CAS  Google Scholar 

  51. Kolmerer, B., N. Olivieri, C. C. Witt, B. Herrmann, and S. Labeit (1996) Genomic organization of M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 256:556–563

    PubMed  CAS  Google Scholar 

  52. Labeit, S., M. Gautel, A. Lakey, and J. Trinick (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716

    PubMed  CAS  Google Scholar 

  53. Labeit, S., and B. Kolmerer (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    PubMed  CAS  Google Scholar 

  54. Labeit, S., B. Kolmerer, and W. A. Linke (1997) The giant protein titin: emerging roles in physiology and pathophysiology. Circ Res 80:290–294

    PubMed  CAS  Google Scholar 

  55. Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub (1989) MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831

    PubMed  CAS  Google Scholar 

  56. Lee, V. M.-Y., L. Otvos, M. J. Carden, M. Hollosi, B. Dietzschold, and R. A. Lazzarini (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85:1998–2002

    PubMed  CAS  Google Scholar 

  57. Lee, W., P. Mitchell, and R. Tjian (1987) Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752

    PubMed  CAS  Google Scholar 

  58. Lin, Z., J. R. Eshelman, S. Forry-Schaudies, S. Duran, J. L. Lessard, and H. Holtzer (1987) Sequential disassembly of myofibrils induced by myristate acetate in cultured myotubes. J Cell Biol 105:1365–1376

    PubMed  CAS  Google Scholar 

  59. Lin, Z., M.-H. Lu, T. Schultheiss, J. Choi, S. Holtzer, C. DiLullo, D. A. Fischman, and H. Holtzer (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Mot Cytoskel 29:1–19

    CAS  Google Scholar 

  60. Littman, D. R., and S. N. Gettner (1987) Unusual intron in the immunoglobulin domain of the newly isolated CD4 (L3T4) gene. Nature 325:453–455

    PubMed  CAS  Google Scholar 

  61. Luther, P. K., and R. A. Crowther (1984) Three-dimensional reconstruction from tilted sections of fish muscle M-band. Nature 307:566–568

    PubMed  CAS  Google Scholar 

  62. Luther, P. K., P. M. G. Munro, and J. M. Squire (1981) Three-dimensional structure of the vertebrate muscle A-band. III. M-region structure and myosin filament symmetry. J Mol Biol 151:703–730

    PubMed  CAS  Google Scholar 

  63. Luther, P. K., and J. M. Squire (1978) Three-dimensional structure of the vertebrate muscle M-region. J Mol Biol 125:313–324

    PubMed  CAS  Google Scholar 

  64. Mani, R. S., and C. M. Kay (1978a) Interaction studies of the 165,000 dalton protein component of the M-line with the S2 subfragment of myosin. Biochim Biophys A 536:134–141

    CAS  Google Scholar 

  65. Mani, R. S., and C. M. Kay (1978b) Isolation and characterization of the 165 000 dalton protein component of the M-line of rabbit skeletal muscle and its interaction with creatine kinase. Biochim Biophys A 533:248–256

    Google Scholar 

  66. Mani, R. S., and C. M. Kay (1981) Fluorescence studies on the interaction of muscle M-line proteins, creatine kinase and the 165,000 dalton component, with each other and with myosin and myosin subfragments. Int J Biochem 13:1197–1200

    PubMed  CAS  Google Scholar 

  67. Maruyama, K. (1994) Connectin, an elastic protein of striated muscle. Biophys Chem 50:73–85

    PubMed  CAS  Google Scholar 

  68. Masaki, T., M. Endo, and S. Ebashi (1967) Localization of 6S component of aactinin at Z-band. J Biochem 62:630–632

    PubMed  CAS  Google Scholar 

  69. Masaki, T., and O. Takaiti (1974) M-protein. J Biochem 75:367–380

    PubMed  CAS  Google Scholar 

  70. Masaki, T., O. Takaiti, and S. Ebashi (1968) “M-substance”, a new protein constituting the M-line of myofibrils. J Biochem 64:909–910

    PubMed  CAS  Google Scholar 

  71. Meyer, R. A., H. Lee-Sweeney, and M. J. Kushmerick (1984) A simple analysis of the “phosphocreatine shuttle”. Am J Physiol 250:C365–C377

    Google Scholar 

  72. Mühlebach, S. M., T. Wirz, U. Brändle, and J.-C. Perriard (1996) Evolution of the creatine kinases. J Biol Chem 271:11920–11929

    PubMed  Google Scholar 

  73. Nave, R., D. O. Fürst, and K. Weber (1989) Visualization of the polarity of isolated titin molecules; a single globular head on a long thin rod as the Mband anchoring domain? J Cell Biol 109:2177–2188

    PubMed  CAS  Google Scholar 

  74. Noguchi, J., M. Yanagisawa, M. Imamura, Y. Kasuya, T. Sakurai, T. Tanaka, and T. Masaki (1992) Complete primary structure and tissue expression of chicken pectoralis M-protein. J Biol Chem 267:20302–20310

    PubMed  CAS  Google Scholar 

  75. Obermann, W., U. Plessmann, K. Weber, and D. O. Fürst (1995) Purification and biochemical characterization of myomesin, a myosin and titin binding protein, from bovine skeletal muscle. Eur J Biochem 233:110–115

    PubMed  CAS  Google Scholar 

  76. Obermann, W. M. J., M. Gautel, F. Steiner, P. F. M. van der Ven, K. Weber, and D. O. Fürst (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein and the 250 kDa carboxyterminal region of titin by immunoelectron microscopy. J Cell Biol 134:1441–1453

    PubMed  CAS  Google Scholar 

  77. Obermann, W. M. J., M. Gautel, K. Weber, and D. O. Fürst (1997) Molecular structure of the sarcomeric M band: mapping of titinand myosin-binding domains of myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220

    PubMed  CAS  Google Scholar 

  78. Obermann, W. M. J., P. F. M. van der Ven, F. Steiner, K. Weber, and D. O. Fürst (1998) Mapping of a myosin binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell 9:829–840

    PubMed  CAS  Google Scholar 

  79. Offer, G. (1987) Myosin filaments. In Fibrous protein structure. J. M. Squire and P. J. Vibert, editors. Academic Press pp 307–356

    Google Scholar 

  80. Okuda, A., M. Imagawa, M. Sakai, and M. Muramatsu (1990) Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J 9:1131–1135

    PubMed  CAS  Google Scholar 

  81. Olson, N. J., R. B. Pearson, D. S. Needleman, M. Y. Hurwitz, B. E. Kemp, and A. R. Means (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci USA 87:2284–2288

    PubMed  CAS  Google Scholar 

  82. Pask, H. T., K. L. Jones, P. K. Luther, and J. M. Squire (1994) M-band structure, M-bridge interactions and contraction speed in vertebrate cardiac muscles. J Musc Res Cell Mot 15:633–645

    CAS  Google Scholar 

  83. Patthy, L. (1991) Modular exchange principles in proteins. Curr Op Struct Biol 1:351–361

    CAS  Google Scholar 

  84. Pearson, R. B., and B. E. Kemp (1991) Protein kinase phosphorylation site sequences and consensus specifity motifs: tabulations. Meth Enzymol 201:62–81

    Google Scholar 

  85. Perriard, J.-C., M. Caravatti, E. R. Perriard, and H. M. Eppenberger (1978) Quantitation of CK isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption. Arch Biochem Biophys 191:90–100

    PubMed  CAS  Google Scholar 

  86. Politou, A., M. Gautel, M. Pfuhl, S. Labeit, and A. Pastore (1994) Immunoglobulin-type domains of titin: same fold, different stability? Biochem 33:4730–4737

    CAS  Google Scholar 

  87. Potts, J. R., and I. D. Campbell (1994) Fibronectin structure and assembly. Curr Biol 6:648–655

    CAS  Google Scholar 

  88. Price, M. (1984) Molecular analysis of intermediate filament cytoskeleton — a putative load-bearing structure. Am J Physiol 246:H566–H572

    PubMed  CAS  Google Scholar 

  89. Price, M. G. (1987) Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle. J Cell Biol 104:1325–1336

    PubMed  CAS  Google Scholar 

  90. Price, M. G., and R. H. Gomer (1993) Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins. J Biol Chem 268:21800–21810

    PubMed  CAS  Google Scholar 

  91. Rhee, D., J. M. Sanger, and J. W. Sanger (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Mot Cytoskel 28:1–24

    CAS  Google Scholar 

  92. Saks, V. A., N. V. Lipina, V. G. Sharov, V. N. Smirnow, E. I. Chazov, and R. Grosse (1977) The localization of MM-isoenzyme of creatine kinase on the surface membrane of myocardial cellsand its functional coupling to ouabaininhibited Na+/K+ ATPase. Biochim Biophys A 465:550–558

    Google Scholar 

  93. Schultheiss, T., Z. Lin, M.-H. Lu, J. M. Murray, D. A. Fischman, K. Weber, T. Masaki, M. Imamura, and H. Holtzer (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172

    PubMed  CAS  Google Scholar 

  94. Sharov, V. G., V. A. Saks, V. N. Smirnow, and E. I. Chazov (1977) An electron microscopical histochemical investigation of the localization of creatine kinase in heart cells. Biochim Biophys A 468:495–501

    Google Scholar 

  95. Sjöström, M., and J. M. Squire (1977) Fine structure of the A-band in cryosections: the structure of the A-band of human skeletal muscle fibers from ultra-thin cryo-sections, negatively-stained. J Mol Biol 109:49–68

    PubMed  Google Scholar 

  96. Small, J. V., D. O. Fürst, and L.-E. Thornell (1992) The cytoskeletal lattice of muscle cells. Eur J Biochem 208:559–572

    PubMed  CAS  Google Scholar 

  97. Sorimachi, H., K. Kinbara, S. Kimura, M. Takahashi, S. Ishiura, N. Sasagawa, N. Sorimachi, H. Shimada, K. Tagawa, K. Maruyama, and K. Suzuki (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162

    PubMed  CAS  Google Scholar 

  98. Squire, J. M. (1981) The structural basis of muscular contraction. Plenum Press, New York

    Google Scholar 

  99. Squire, J. M., P. K. Luther, and J. Trinick (1987) Muscle myofibril architecture. In Fibrous Protein Structure. J. M. Squire and P. J. Vibert, editors. Academic Press, London pp 423–450

    Google Scholar 

  100. Steeghs, K., A. Benders, F. Oerlemans, A. De Haan, A. Heerschap, W. Ruitenbeek, C. Jost, J. Van Deursen, B. Perryman, D. Pette, M. Brückwilder, J. Koudijs, P. Jap, J. Veerkamp, and B. Wieringa (1997) Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:1–20

    Google Scholar 

  101. Steiner, F., K. Weber, and D. O. Fürst (1998) Structure and expression of the gene encoding murine M-protein, a sarcomere-specific member of the immunoglobulin superfamily. Genomics 49:83–95

    PubMed  CAS  Google Scholar 

  102. Stolz, M. (1997) Chicken cytosolic muscle-type creatine kinase: ientification of the M-band binding domain and analysis of particular enzyme properties by site-directed mutagenesis. Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  103. Strehler, E. E., E. Carlsson, H. M. Eppenberger, and L.-E. Thornell (1983) Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immunocytochemistry an ultramicrotomy. J Mol Biol 166:141–158

    PubMed  CAS  Google Scholar 

  104. Strehler, E. E., G. Pelloni, C. W. Heizmann, and H. M. Eppenberger (1980) Biochemical and ultrastructural aspects of Mr 165,000 M-protein in crossstriated chicken muscle. J Cell Biol 86:775–783

    PubMed  CAS  Google Scholar 

  105. Tokuyasu, K. T., and P. A. Maher (1987a) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–22793

    PubMed  CAS  Google Scholar 

  106. Tokuyasu, K. T., and P. A. Maher (1987b) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of a-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801

    PubMed  CAS  Google Scholar 

  107. Trinick, J. (1994) Titin and nebulin: protein rulers in muscle? Trends Biochem Sci 19:405–409

    PubMed  CAS  Google Scholar 

  108. Trinick, J., and S. Lowey (1977) M-protein from chicken pectoralis muscle: isolation and characterization. J Mol Biol 113:343–368

    PubMed  CAS  Google Scholar 

  109. Turner, D. C., T. Wallimann, and H. M. Eppenberger (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatin kinase. Proc Natl Acad Sci USA 70:702–705

    PubMed  CAS  Google Scholar 

  110. Van der Ven, P. F. M., and D. O. Fürst (1997) Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro. Cell Struct Funct 22:163–171

    PubMed  Google Scholar 

  111. Van Deursen, J., A. Heerschap, F. Oerlemans, W. Ruitenbeek, P. Jap, H. Ter Laak, and B. Wieringa (1993) Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74:621–631

    PubMed  Google Scholar 

  112. Van Deursen, J., W. Ruitenbeek, A. Heerschap, P. Jap, H. Ter Laak, and B. Wieringa (1994) Creatine kinase in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in M-CK expression. Proc Natl Acad Sci USA 91:9091–9095

    PubMed  Google Scholar 

  113. Vinkemeier, U., W. Obermann, K. Weber, and D. O. Fürst (1993) The globular head domain of titin extends into the center of the sarcomeric M band. J Cell Sci 106:319–330

    PubMed  CAS  Google Scholar 

  114. Wallimann, T. (1994) Dissecting the role of creatine kinase. Curr Biol 1:42–46

    Google Scholar 

  115. Wallimann, T., T. C. Doetschman, and H. M. Eppenberger (1983) Novel staining pattern of skeletal muscle M-lines upon incubation with antibodies against MM-creatine kinase. J Cell Biol 96:1772–1779

    PubMed  CAS  Google Scholar 

  116. Wallimann, T., and H. M. Eppenberger (1985) Localization and function of M-line-bound creatine kinase. Cell Musc Motil 6:239–285

    CAS  Google Scholar 

  117. Wallimann, T., T. Schnyder, J. Schlegel, M. Wyss, G. Wegmann, A. M. Rossi, W. Hemmer, H. M. Eppenberger, and A. F. G. Quest (1989) Subcellular compartmentalization of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphorylcreatine circuit. Progr Clin Biol Res 315:159–176

    CAS  Google Scholar 

  118. Wallimann, T., D. C. Turner, and H.-M. Eppenberger (1977) Localization of creatine kinase isoenzymes in myofibrils. J Cell Biol 75:297–317

    PubMed  CAS  Google Scholar 

  119. Wallimann, T., G. Wegmann, H. Moser, R. Huber, and H. M. Eppenberger (1986) High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 83:3816–3819

    PubMed  CAS  Google Scholar 

  120. Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger (1992) Intrazellular compartmentalization, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  121. Wang, K. (1996) Titin/connectin and nebulin: giant protein rulersof muscle structure and function. Adv Biophys 33:123–134

    PubMed  CAS  Google Scholar 

  122. Wegmann, G., E. Zanolla, H. M. Eppenberger, and T. Wallimann (1992) In situ compartmentalization of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Musc Res Cell Motil 13:420–435

    CAS  Google Scholar 

  123. Williams, A. F., and A. N. Barclay (1988) The immunoglobulin superfamily domains for cell surface recognition. Ann Rev Immunol 6:381–405

    CAS  Google Scholar 

  124. Williams, A. F., S. J. Davis, and A. N. Barclay (1989) Structural diversity in domains of the immunoglobulin superfamily. CSH Symp Quant Biol 54:637–647

    CAS  Google Scholar 

  125. Woodhead, J. I., and S. Lowey (1982) Size and shape of skeletal muscle Mprotein. J Mol Biol 157:149–154

    PubMed  CAS  Google Scholar 

  126. Woodhead, J. L., and S. Lowey (1983) An in vitro study of the interactions of skeletal muscle M-protein and creatine kinase with myosin and its subfragments. J Mol Biol 168:831–846

    PubMed  CAS  Google Scholar 

  127. Wyss, M., J. Smeitink, R. A. Wevers, and T. Wallimann (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys A 1102:119–166

    Google Scholar 

  128. Yajima, H., H. Ohtsuka, Y. Kawamura, H. Kume, T. Murayama, H. Abe, S. Kimura, and K. Maruyama (1996) A 11.5 kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem Biophys Res Comm 223:160–164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Fürst, D.O., Obermann, W.M.J., van der Ven, P.F.M. (1999). Structure and assembly of the sarcomeric M Band. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119627

Download citation

  • DOI: https://doi.org/10.1007/BFb0119627

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65484-1

  • Online ISBN: 978-3-540-49231-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics