Structure and assembly of the sarcomeric M Band

  • D. O. Fürst
  • W. M. J. Obermann
  • P. F. M. van der Ven
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 138)


M bands and Z discs seem to be crucially involved in establishing the strikingly ordered array of thick and thin filaments, respectively. This requires control mechanisms that allow for the sequential assembly of contractile and structural proteins into the sarcomere. In addition, tightly controlled local disassembly processes have to provide a basis for the turnover and remodelling that has been observed (like, for instance, the exchange of developmental stage-specific sarcomere protein isoforms in a working muscle). Previous work has focussed on the characterization of a plethora of contractile and cytoskeletal proteins. More recent results give good reasons to hope that it may be possible to explain the various ultrastructural findings at a molecular level in the future. Likewise, they give a first hint at which signal transduction mechanisms could be involved in the control of the assembly of the supramolecular structure that makes us move.


Creatine Kinase Satellite Cell Thick Filament Immunoglobulin Superfamily Creatine Kinase Isoenzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anversa, P., G. Olivetti, P.-G. Bracchi, and A. V. Loud (1981) Postnatal development of the M-band in rat cardiac myofibrils. Circ Res 48:561–568PubMedGoogle Scholar
  2. 2.
    Arnold, H., and D. Pette (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem 15:360–366PubMedGoogle Scholar
  3. 3.
    Auerbach, D., B. Rothen-Rutishauser, S. Bantle, M. Leu, E. Ehler, D. Helfman, and J. C. Perriard (1997) Molecular mechanisms of myofibril assembly in heart. Cell Struct Funct 22:139–146PubMedGoogle Scholar
  4. 4.
    Ayme-Southgate, A., J. Vigureaux, G. Benian, and M. L. Pardue (1991) Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci USA 88:7973–7977PubMedGoogle Scholar
  5. 5.
    Bähler, M., T. Wallimann, and H. M. Eppenberger (1985) Myofibrillar Miband proteins represent constituents of native thick filaments, frayed filaments and bare zone assemblages. J Muscle Res Cell Mot 6:783–800Google Scholar
  6. 6.
    Bantle, S., S. Keller, I. Haussmann, D. Auerbach, E. Perriard, S. Mühlebach, and J.-C. Perriard (1996) Tissue-specific isoforms of chicken myomesin are generated by alternative splicing. J Biol Chem 271:19042–19052PubMedGoogle Scholar
  7. 7.
    Barjot, C., M.-L. Cotten, C. Goblet, R. G. Whalen, and F. Bacou (1995) Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J Musc Res Cell Mot 16:619–628Google Scholar
  8. 8.
    Baskin, R. J., and D. N. Deamer (1970) A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum. J Biol Chem 259:14979–14984Google Scholar
  9. 9.
    Benian, G. M., J. E. Kiff, N. Neckelmann, D. G. Moerman, and R. H. Waterston (1989) Sequence of an unusually large protein implicated in the regulation of myosin activity in C. elegans. Nature 342:45–50PubMedGoogle Scholar
  10. 10.
    Bober, E., G. E. Lyons, T. Braun, G. Cossu, M. Buckingham, and H.-H. Arnold (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265PubMedGoogle Scholar
  11. 11.
    Carlsson, E., B. K. Grove, T. Wallimann, H. M. Eppenberger, and L.-E. Thornell (1990) Myofibrillar M-band proteins in rat skeletal muscles during development. Histochem 95:27–35Google Scholar
  12. 12.
    Cohen, I. R., S. Grässel, A. D. Murdoch, and R. V. Iozzo (1993) Structural characterization of the complete human perlecan gene and its promoter. Proc. Natl Acad Sci USA 90:10404–10408PubMedGoogle Scholar
  13. 13.
    Croop, J., G. Dubyak, Y. Toyama, A. Dlugosz, A. Scarpa, and H. Holtzer (1982) Effects of 12-O-tetradecanoyl-phorbol-13-acetate on myofibril integrity and Ca2+ content in developing myotubes. Dev Biol 89:460–474PubMedGoogle Scholar
  14. 14.
    Cunningham, B. A., J. J. Hemperly, B. A. Murray, E. A. Prediger, R. Brackenbury, and G. M. Edelman (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806PubMedGoogle Scholar
  15. 15.
    Dobie, W. M. (1849) Observations on the minute structure and the mode of contraction of voluntary muscle fibers. Ann Mag Nat Hist 3:109Google Scholar
  16. 16.
    Draper, M. H., and A. J. Hodge (1946) Studies on muscle with the electron microscope: I. The ultrastructure of of toad striated muscle. Austr J Exptl Biol Med Sci 27:465–503Google Scholar
  17. 17.
    Düsterhöft, S. and D. Pette (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53:25–33PubMedGoogle Scholar
  18. 18.
    Edman, A.-C., J. M. Squire, and M. Sjöström (1988) Fine structure of the Aband in cryo-sections. J Ultrastruct Mol Struct Res 100:1–12PubMedGoogle Scholar
  19. 19.
    Eppenberger, H. M., D. M. Dawson, and N. O. Kaplan (1967) The comparative enzymology of creatine kinase isoenzymes. J Biol Chem 242:204–209PubMedGoogle Scholar
  20. 20.
    Eppenberger, H. M., J.-C. Perriard, U. B. Rosenberg, and E. E. Strehler (1981) The Mr 165,000 M-protein myomesin: a specific protein of croo-striated muscle cells. J Cell Biol 89:185–193PubMedGoogle Scholar
  21. 21.
    Feldman, J. I., and F. E. Stockdale (1991) Skeletal muscle satellite cell diversity: Satellite cells form fibers of different types in cell culture. Dev Biol 143:320–334PubMedGoogle Scholar
  22. 22.
    Fickett, J. W. (1996) Quantitative discrimination of MEF2 sites. Mol Cell Biol 16:437–441PubMedGoogle Scholar
  23. 23.
    Freiburg, A., and M. Gautel (1996) A molecular map of the interactions of titin and myosin-binding protein C: implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323PubMedGoogle Scholar
  24. 24.
    Friedman, D. L., and M. B. Perryman (1991) Compartmentalization of multiple forms of creatine kinase in the distal nephron of the rat kidney. J Biol Chem 266:22404–22410PubMedGoogle Scholar
  25. 25.
    Fritz-Wolf, K., T. Schnyder, T. Wallimann, and W. Kabsch (1996) Structure of mitochondrial creatine kinase. Nature 381:341–345PubMedGoogle Scholar
  26. 26.
    Fürst, D. O., and M. Gautel (1995) The anatomy of a molecular giant: How the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J Mol Cell Cardiol 27:951–960PubMedGoogle Scholar
  27. 27.
    Fürst, D. O., R. Nave, M. Osborn, and K. Weber (1989a) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins; an immunoelectron microscopical study on myofibrils. J Cell Biol 94:119–125Google Scholar
  28. 28.
    Fürst, D. O., M. Osborn, R. Nave, and K. Weber (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy; a map of ten non-repetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572PubMedGoogle Scholar
  29. 29.
    Fürst, D. O., M. Osborn, and K. Weber (1989b) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527PubMedGoogle Scholar
  30. 30.
    Fürst, D. O., U. Vinkemeier, and K. Weber (1992) Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full length human cDNA. J Cell Sci 102:769–778PubMedGoogle Scholar
  31. 31.
    Gautel, M., D. Goulding, B. Bullard, K. Weber, and D. O. Fürst (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754PubMedGoogle Scholar
  32. 32.
    Gautel, M., K. Leonard, and S. Labeit (1993) Phosphorylation of KSP motifs in the C-terminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834PubMedGoogle Scholar
  33. 33.
    Geisler, N., and K. Weber (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J 1:1649–1656PubMedGoogle Scholar
  34. 34.
    Grosse, R., E. Spitzer, V. V. Kupriyanov, V. A. Saks, and K. R. H. Repke (1980) Coordinate interplay between (Na+/K+)-ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cells. Biochim Biophys A 603:142–156Google Scholar
  35. 35.
    Grove, B. K., L. Cerny, J.-C. Perriard, and H. M. Eppenberger (1985) Myomesin and M-protein: Expression of two M-band proteins in pectoral muscle and heart during development. J Cell Biol 101:1413–1421PubMedGoogle Scholar
  36. 36.
    Grove, B. K., B. Holmbom, and L.-E. Thornell (1987) Myomesin and M protein: differential expression in embryonic fibers during pectoral muscle development. Differentiation 34:106–114PubMedGoogle Scholar
  37. 37.
    Grove, B. K., V. Kurer, C. Lehner, T. C. Doetschmann, J.-C. Perriard, and H. M. Eppenberger (1984) A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies. J Cell Biol 98:518–524PubMedGoogle Scholar
  38. 38.
    Grove, B. K., and L.-E. Thornell (1988) Noncoordinate expression of M band proteins in slow and fast embryonic chick muscles. Muscle & Nerve 11:645–653Google Scholar
  39. 39.
    Hall, C. E., M. A. Jakus, and F. O. Schmitt (1946) An investigation of crossstriations and myosin filaments in muscle. Biol Bull 90:32–50Google Scholar
  40. 40.
    Hartzell, H. C., and W. S. Sale (1985) Structure of C-protein purified from cardiac muscle. J Cell Biol 100:208–215PubMedGoogle Scholar
  41. 41.
    Heierhorst, J., W. C. Probst, F. S. Vilim, A. Buku, and K. R. Weiss (1994) Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 269:21086–21093PubMedGoogle Scholar
  42. 42.
    Herasymowych, O. S., R. S. Mani, C. M. Kay, R. D. Bradley, and D. G. Scraba (1980) Ultrastructure studies on the binding of creatine kinase and the 165,000 molecular weight component of the M-band of muscle. J Mol Biol 136:193–198PubMedGoogle Scholar
  43. 43.
    Hinterberger, T. J., D. A. Sassoon, S. J. Rhodes, and S. F. Konieczny (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156PubMedGoogle Scholar
  44. 44.
    Holden, H. M., M. Ito, D. J. Hartshorne, and I. Rayment (1992) X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 Å resolution. J Mol Biol 227:840–851PubMedGoogle Scholar
  45. 45.
    Holness, C. L., and D. L. Simmons (1994) Structural motifs for recognition and adhesion in memebers of the immunoglobulin superfamily. J Cell Sci 107:2065–2070PubMedGoogle Scholar
  46. 46.
    Hossle, J. P., J. Schlegel, G. Wegmann, M. Wyss, P. Böhlen, H. M. Eppenberger, T. Wallimann, and J.-C. Perriard (1988) Distinct, tissue-specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Comm 151:408–416PubMedGoogle Scholar
  47. 47.
    Jacobs, H., H. W. Heldt, and M. Klingenberg (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Comm 16:516–521PubMedGoogle Scholar
  48. 48.
    Jacobus, W. E., and A. L. Lehninger (1973) Creatine kinase of rat heart, mitochondrial coupling of creatine phosphorylation to electron transport. J Biol Chem 248:4803–4810PubMedGoogle Scholar
  49. 49.
    Kahn, M. A., P. G. Holt, J. O. Knight, J. M. Papadimi, and B. A. Kakulas (1972) Creatine kinase, a histochemical study by gelatin film-lead precipitation technique. Histochem 32:49Google Scholar
  50. 50.
    Knappeis, G. G., and F. Carlsen (1968) The ultrastructure of the M line in skeletal muscle. J Cell Biol 38:202–211PubMedGoogle Scholar
  51. 51.
    Kolmerer, B., N. Olivieri, C. C. Witt, B. Herrmann, and S. Labeit (1996) Genomic organization of M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 256:556–563PubMedGoogle Scholar
  52. 52.
    Labeit, S., M. Gautel, A. Lakey, and J. Trinick (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716PubMedGoogle Scholar
  53. 53.
    Labeit, S., and B. Kolmerer (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedGoogle Scholar
  54. 54.
    Labeit, S., B. Kolmerer, and W. A. Linke (1997) The giant protein titin: emerging roles in physiology and pathophysiology. Circ Res 80:290–294PubMedGoogle Scholar
  55. 55.
    Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub (1989) MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831PubMedGoogle Scholar
  56. 56.
    Lee, V. M.-Y., L. Otvos, M. J. Carden, M. Hollosi, B. Dietzschold, and R. A. Lazzarini (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85:1998–2002PubMedGoogle Scholar
  57. 57.
    Lee, W., P. Mitchell, and R. Tjian (1987) Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752PubMedGoogle Scholar
  58. 58.
    Lin, Z., J. R. Eshelman, S. Forry-Schaudies, S. Duran, J. L. Lessard, and H. Holtzer (1987) Sequential disassembly of myofibrils induced by myristate acetate in cultured myotubes. J Cell Biol 105:1365–1376PubMedGoogle Scholar
  59. 59.
    Lin, Z., M.-H. Lu, T. Schultheiss, J. Choi, S. Holtzer, C. DiLullo, D. A. Fischman, and H. Holtzer (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Mot Cytoskel 29:1–19Google Scholar
  60. 60.
    Littman, D. R., and S. N. Gettner (1987) Unusual intron in the immunoglobulin domain of the newly isolated CD4 (L3T4) gene. Nature 325:453–455PubMedGoogle Scholar
  61. 61.
    Luther, P. K., and R. A. Crowther (1984) Three-dimensional reconstruction from tilted sections of fish muscle M-band. Nature 307:566–568PubMedGoogle Scholar
  62. 62.
    Luther, P. K., P. M. G. Munro, and J. M. Squire (1981) Three-dimensional structure of the vertebrate muscle A-band. III. M-region structure and myosin filament symmetry. J Mol Biol 151:703–730PubMedGoogle Scholar
  63. 63.
    Luther, P. K., and J. M. Squire (1978) Three-dimensional structure of the vertebrate muscle M-region. J Mol Biol 125:313–324PubMedGoogle Scholar
  64. 64.
    Mani, R. S., and C. M. Kay (1978a) Interaction studies of the 165,000 dalton protein component of the M-line with the S2 subfragment of myosin. Biochim Biophys A 536:134–141Google Scholar
  65. 65.
    Mani, R. S., and C. M. Kay (1978b) Isolation and characterization of the 165 000 dalton protein component of the M-line of rabbit skeletal muscle and its interaction with creatine kinase. Biochim Biophys A 533:248–256Google Scholar
  66. 66.
    Mani, R. S., and C. M. Kay (1981) Fluorescence studies on the interaction of muscle M-line proteins, creatine kinase and the 165,000 dalton component, with each other and with myosin and myosin subfragments. Int J Biochem 13:1197–1200PubMedGoogle Scholar
  67. 67.
    Maruyama, K. (1994) Connectin, an elastic protein of striated muscle. Biophys Chem 50:73–85PubMedGoogle Scholar
  68. 68.
    Masaki, T., M. Endo, and S. Ebashi (1967) Localization of 6S component of aactinin at Z-band. J Biochem 62:630–632PubMedGoogle Scholar
  69. 69.
    Masaki, T., and O. Takaiti (1974) M-protein. J Biochem 75:367–380PubMedGoogle Scholar
  70. 70.
    Masaki, T., O. Takaiti, and S. Ebashi (1968) “M-substance”, a new protein constituting the M-line of myofibrils. J Biochem 64:909–910PubMedGoogle Scholar
  71. 71.
    Meyer, R. A., H. Lee-Sweeney, and M. J. Kushmerick (1984) A simple analysis of the “phosphocreatine shuttle”. Am J Physiol 250:C365–C377Google Scholar
  72. 72.
    Mühlebach, S. M., T. Wirz, U. Brändle, and J.-C. Perriard (1996) Evolution of the creatine kinases. J Biol Chem 271:11920–11929PubMedGoogle Scholar
  73. 73.
    Nave, R., D. O. Fürst, and K. Weber (1989) Visualization of the polarity of isolated titin molecules; a single globular head on a long thin rod as the Mband anchoring domain? J Cell Biol 109:2177–2188PubMedGoogle Scholar
  74. 74.
    Noguchi, J., M. Yanagisawa, M. Imamura, Y. Kasuya, T. Sakurai, T. Tanaka, and T. Masaki (1992) Complete primary structure and tissue expression of chicken pectoralis M-protein. J Biol Chem 267:20302–20310PubMedGoogle Scholar
  75. 75.
    Obermann, W., U. Plessmann, K. Weber, and D. O. Fürst (1995) Purification and biochemical characterization of myomesin, a myosin and titin binding protein, from bovine skeletal muscle. Eur J Biochem 233:110–115PubMedGoogle Scholar
  76. 76.
    Obermann, W. M. J., M. Gautel, F. Steiner, P. F. M. van der Ven, K. Weber, and D. O. Fürst (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein and the 250 kDa carboxyterminal region of titin by immunoelectron microscopy. J Cell Biol 134:1441–1453PubMedGoogle Scholar
  77. 77.
    Obermann, W. M. J., M. Gautel, K. Weber, and D. O. Fürst (1997) Molecular structure of the sarcomeric M band: mapping of titinand myosin-binding domains of myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220PubMedGoogle Scholar
  78. 78.
    Obermann, W. M. J., P. F. M. van der Ven, F. Steiner, K. Weber, and D. O. Fürst (1998) Mapping of a myosin binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell 9:829–840PubMedGoogle Scholar
  79. 79.
    Offer, G. (1987) Myosin filaments. In Fibrous protein structure. J. M. Squire and P. J. Vibert, editors. Academic Press pp 307–356Google Scholar
  80. 80.
    Okuda, A., M. Imagawa, M. Sakai, and M. Muramatsu (1990) Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J 9:1131–1135PubMedGoogle Scholar
  81. 81.
    Olson, N. J., R. B. Pearson, D. S. Needleman, M. Y. Hurwitz, B. E. Kemp, and A. R. Means (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci USA 87:2284–2288PubMedGoogle Scholar
  82. 82.
    Pask, H. T., K. L. Jones, P. K. Luther, and J. M. Squire (1994) M-band structure, M-bridge interactions and contraction speed in vertebrate cardiac muscles. J Musc Res Cell Mot 15:633–645Google Scholar
  83. 83.
    Patthy, L. (1991) Modular exchange principles in proteins. Curr Op Struct Biol 1:351–361Google Scholar
  84. 84.
    Pearson, R. B., and B. E. Kemp (1991) Protein kinase phosphorylation site sequences and consensus specifity motifs: tabulations. Meth Enzymol 201:62–81Google Scholar
  85. 85.
    Perriard, J.-C., M. Caravatti, E. R. Perriard, and H. M. Eppenberger (1978) Quantitation of CK isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption. Arch Biochem Biophys 191:90–100PubMedGoogle Scholar
  86. 86.
    Politou, A., M. Gautel, M. Pfuhl, S. Labeit, and A. Pastore (1994) Immunoglobulin-type domains of titin: same fold, different stability? Biochem 33:4730–4737Google Scholar
  87. 87.
    Potts, J. R., and I. D. Campbell (1994) Fibronectin structure and assembly. Curr Biol 6:648–655Google Scholar
  88. 88.
    Price, M. (1984) Molecular analysis of intermediate filament cytoskeleton — a putative load-bearing structure. Am J Physiol 246:H566–H572PubMedGoogle Scholar
  89. 89.
    Price, M. G. (1987) Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle. J Cell Biol 104:1325–1336PubMedGoogle Scholar
  90. 90.
    Price, M. G., and R. H. Gomer (1993) Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins. J Biol Chem 268:21800–21810PubMedGoogle Scholar
  91. 91.
    Rhee, D., J. M. Sanger, and J. W. Sanger (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Mot Cytoskel 28:1–24Google Scholar
  92. 92.
    Saks, V. A., N. V. Lipina, V. G. Sharov, V. N. Smirnow, E. I. Chazov, and R. Grosse (1977) The localization of MM-isoenzyme of creatine kinase on the surface membrane of myocardial cellsand its functional coupling to ouabaininhibited Na+/K+ ATPase. Biochim Biophys A 465:550–558Google Scholar
  93. 93.
    Schultheiss, T., Z. Lin, M.-H. Lu, J. M. Murray, D. A. Fischman, K. Weber, T. Masaki, M. Imamura, and H. Holtzer (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172PubMedGoogle Scholar
  94. 94.
    Sharov, V. G., V. A. Saks, V. N. Smirnow, and E. I. Chazov (1977) An electron microscopical histochemical investigation of the localization of creatine kinase in heart cells. Biochim Biophys A 468:495–501Google Scholar
  95. 95.
    Sjöström, M., and J. M. Squire (1977) Fine structure of the A-band in cryosections: the structure of the A-band of human skeletal muscle fibers from ultra-thin cryo-sections, negatively-stained. J Mol Biol 109:49–68PubMedGoogle Scholar
  96. 96.
    Small, J. V., D. O. Fürst, and L.-E. Thornell (1992) The cytoskeletal lattice of muscle cells. Eur J Biochem 208:559–572PubMedGoogle Scholar
  97. 97.
    Sorimachi, H., K. Kinbara, S. Kimura, M. Takahashi, S. Ishiura, N. Sasagawa, N. Sorimachi, H. Shimada, K. Tagawa, K. Maruyama, and K. Suzuki (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162PubMedGoogle Scholar
  98. 98.
    Squire, J. M. (1981) The structural basis of muscular contraction. Plenum Press, New YorkGoogle Scholar
  99. 99.
    Squire, J. M., P. K. Luther, and J. Trinick (1987) Muscle myofibril architecture. In Fibrous Protein Structure. J. M. Squire and P. J. Vibert, editors. Academic Press, London pp 423–450Google Scholar
  100. 100.
    Steeghs, K., A. Benders, F. Oerlemans, A. De Haan, A. Heerschap, W. Ruitenbeek, C. Jost, J. Van Deursen, B. Perryman, D. Pette, M. Brückwilder, J. Koudijs, P. Jap, J. Veerkamp, and B. Wieringa (1997) Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:1–20Google Scholar
  101. 101.
    Steiner, F., K. Weber, and D. O. Fürst (1998) Structure and expression of the gene encoding murine M-protein, a sarcomere-specific member of the immunoglobulin superfamily. Genomics 49:83–95PubMedGoogle Scholar
  102. 102.
    Stolz, M. (1997) Chicken cytosolic muscle-type creatine kinase: ientification of the M-band binding domain and analysis of particular enzyme properties by site-directed mutagenesis. Swiss Federal Institute of Technology, ZürichGoogle Scholar
  103. 103.
    Strehler, E. E., E. Carlsson, H. M. Eppenberger, and L.-E. Thornell (1983) Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immunocytochemistry an ultramicrotomy. J Mol Biol 166:141–158PubMedGoogle Scholar
  104. 104.
    Strehler, E. E., G. Pelloni, C. W. Heizmann, and H. M. Eppenberger (1980) Biochemical and ultrastructural aspects of Mr 165,000 M-protein in crossstriated chicken muscle. J Cell Biol 86:775–783PubMedGoogle Scholar
  105. 105.
    Tokuyasu, K. T., and P. A. Maher (1987a) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–22793PubMedGoogle Scholar
  106. 106.
    Tokuyasu, K. T., and P. A. Maher (1987b) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of a-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801PubMedGoogle Scholar
  107. 107.
    Trinick, J. (1994) Titin and nebulin: protein rulers in muscle? Trends Biochem Sci 19:405–409PubMedGoogle Scholar
  108. 108.
    Trinick, J., and S. Lowey (1977) M-protein from chicken pectoralis muscle: isolation and characterization. J Mol Biol 113:343–368PubMedGoogle Scholar
  109. 109.
    Turner, D. C., T. Wallimann, and H. M. Eppenberger (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatin kinase. Proc Natl Acad Sci USA 70:702–705PubMedGoogle Scholar
  110. 110.
    Van der Ven, P. F. M., and D. O. Fürst (1997) Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro. Cell Struct Funct 22:163–171PubMedGoogle Scholar
  111. 111.
    Van Deursen, J., A. Heerschap, F. Oerlemans, W. Ruitenbeek, P. Jap, H. Ter Laak, and B. Wieringa (1993) Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74:621–631PubMedGoogle Scholar
  112. 112.
    Van Deursen, J., W. Ruitenbeek, A. Heerschap, P. Jap, H. Ter Laak, and B. Wieringa (1994) Creatine kinase in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in M-CK expression. Proc Natl Acad Sci USA 91:9091–9095PubMedGoogle Scholar
  113. 113.
    Vinkemeier, U., W. Obermann, K. Weber, and D. O. Fürst (1993) The globular head domain of titin extends into the center of the sarcomeric M band. J Cell Sci 106:319–330PubMedGoogle Scholar
  114. 114.
    Wallimann, T. (1994) Dissecting the role of creatine kinase. Curr Biol 1:42–46Google Scholar
  115. 115.
    Wallimann, T., T. C. Doetschman, and H. M. Eppenberger (1983) Novel staining pattern of skeletal muscle M-lines upon incubation with antibodies against MM-creatine kinase. J Cell Biol 96:1772–1779PubMedGoogle Scholar
  116. 116.
    Wallimann, T., and H. M. Eppenberger (1985) Localization and function of M-line-bound creatine kinase. Cell Musc Motil 6:239–285Google Scholar
  117. 117.
    Wallimann, T., T. Schnyder, J. Schlegel, M. Wyss, G. Wegmann, A. M. Rossi, W. Hemmer, H. M. Eppenberger, and A. F. G. Quest (1989) Subcellular compartmentalization of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphorylcreatine circuit. Progr Clin Biol Res 315:159–176Google Scholar
  118. 118.
    Wallimann, T., D. C. Turner, and H.-M. Eppenberger (1977) Localization of creatine kinase isoenzymes in myofibrils. J Cell Biol 75:297–317PubMedGoogle Scholar
  119. 119.
    Wallimann, T., G. Wegmann, H. Moser, R. Huber, and H. M. Eppenberger (1986) High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 83:3816–3819PubMedGoogle Scholar
  120. 120.
    Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger (1992) Intrazellular compartmentalization, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. Biochem J 281:21–40PubMedGoogle Scholar
  121. 121.
    Wang, K. (1996) Titin/connectin and nebulin: giant protein rulersof muscle structure and function. Adv Biophys 33:123–134PubMedGoogle Scholar
  122. 122.
    Wegmann, G., E. Zanolla, H. M. Eppenberger, and T. Wallimann (1992) In situ compartmentalization of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Musc Res Cell Motil 13:420–435Google Scholar
  123. 123.
    Williams, A. F., and A. N. Barclay (1988) The immunoglobulin superfamily domains for cell surface recognition. Ann Rev Immunol 6:381–405Google Scholar
  124. 124.
    Williams, A. F., S. J. Davis, and A. N. Barclay (1989) Structural diversity in domains of the immunoglobulin superfamily. CSH Symp Quant Biol 54:637–647Google Scholar
  125. 125.
    Woodhead, J. I., and S. Lowey (1982) Size and shape of skeletal muscle Mprotein. J Mol Biol 157:149–154PubMedGoogle Scholar
  126. 126.
    Woodhead, J. L., and S. Lowey (1983) An in vitro study of the interactions of skeletal muscle M-protein and creatine kinase with myosin and its subfragments. J Mol Biol 168:831–846PubMedGoogle Scholar
  127. 127.
    Wyss, M., J. Smeitink, R. A. Wevers, and T. Wallimann (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys A 1102:119–166Google Scholar
  128. 128.
    Yajima, H., H. Ohtsuka, Y. Kawamura, H. Kume, T. Murayama, H. Abe, S. Kimura, and K. Maruyama (1996) A 11.5 kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem Biophys Res Comm 223:160–164PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • D. O. Fürst
    • 1
  • W. M. J. Obermann
    • 2
  • P. F. M. van der Ven
    • 1
  1. 1.Department of Cell BiologyUniversity of PotsdamGermany
  2. 2.Department of Cellular BiochemistryMax-Planck-Institute for BiochemistryMartinsriedGermany

Personalised recommendations