The elastic filament system in myogenesis

  • A. B. Fulton
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 138)


Myosin Heavy Chain Thick Filament Tensegrity Structure Titin Molecule Myofibril Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Squire JM (1997) Architecture and function in the muscle sarcomere. Curr Opin Struct Biol 7:247–257PubMedCrossRefGoogle Scholar
  2. 2.
    Maruyama K, Kimura S, Ohasi K, Kuwano Y (1996) Connectin, an elastic protein in muscle. Identification of “titin” with connectin. J Biochem 89:701–719Google Scholar
  3. 3.
    Trinick J (1996) Titin as a scaffold and spring. Curr Biol 6:258–260PubMedCrossRefGoogle Scholar
  4. 4.
    Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 33:123–134PubMedCrossRefGoogle Scholar
  5. 5.
    Tokuyasu KT, Maher PA (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801PubMedCrossRefGoogle Scholar
  6. 6.
    Tokuyasu KT, Maher PA (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–2793PubMedCrossRefGoogle Scholar
  7. 7.
    Schaart G, Viebahn C, Langmann W, Ramaekers F (1989) Desmin and titin expression in early postimplantation mouse embryos. Dev 107:585–596Google Scholar
  8. 8.
    Lin ZX, Eshleman J, Grund C, Fischman DA, Masaki T, Franke WW, et al. (1989) Differential response of myofibrillar and cytoskeletal proteins in cells treated with phorbol myristate acetate. J Cell Biol 108:1079–1091PubMedCrossRefGoogle Scholar
  9. 9.
    van der Loop FT, Schaart G, Langmann W, Ramaekers FC, Viebahn C (1992) Expression and organization of muscle specific proteins during the early developmental stages of the rabbit heart. Anatomy & Embryology 185:439–450Google Scholar
  10. 10.
    Shimada Y, Komiyama M, Begum S, Maruyama K (1996) Development of connectin/titin and nebulin in striated muscles of chicken. Adv Biophys 33:223–233PubMedCrossRefGoogle Scholar
  11. 11.
    Furst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527PubMedCrossRefGoogle Scholar
  12. 12.
    Wang SM, Greaser ML, Schultz E, Bulinski JC, Lin JJ, Lessard JL (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 107:1075–1083PubMedCrossRefGoogle Scholar
  13. 13.
    Handel SE, Greaser ML, Schultz E, Wang SM, Bulinski JC, Lin JJ, et al. (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell & Tiss Res 263:419–430CrossRefGoogle Scholar
  14. 14.
    Terai M, Komiyama M, Shimada Y (1989) Myofibril assembly is linked with vinculin, alpha-actinin, and cell-substrate contacts in embryonic cardiac myocytes in vitro. Cell Motil & Cytoskel 12:185–194CrossRefGoogle Scholar
  15. 15.
    Schultheiss T, Lin ZX, Lu MH, Murray J, Fischman DA, Weber K, et al. (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172PubMedCrossRefGoogle Scholar
  16. 16.
    Komiyama M, Maruyama K, Shimada Y (1990) Assembly of connectin (titin) in relation to myosin and alpha-actinin in cultured cardiac myocytes. J Mus Res & Cell Motil 11:419–428CrossRefGoogle Scholar
  17. 17.
    Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskel 28:1–24CrossRefGoogle Scholar
  18. 18.
    Komiyama M, Kouchi K, Maruyama K, Shimada Y (1993) Dynamics of actin and assembly of connectin (titin) during myofibrillogenesis in embryonic chick cardiac muscle cells in vitro. Dev Dyn 196:291–299PubMedGoogle Scholar
  19. 19.
    van der Loop FT, van Eys GJ, Schaart G, Ramaekers FC (1996) Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Mus Res Cell Motil 17:23–36CrossRefGoogle Scholar
  20. 20.
    Colley NJ, Tokuyasu KT, Singer SJ (1990) The early expression of myofibrillar proteins in round postmitotic myoblasts of embryonic skeletal muscle. J Cell Sci 95:11–22PubMedGoogle Scholar
  21. 21.
    Turnacioglu KK, Mittal B, Sanger JM, Sanger JW (1996) Partial characterization of zeugmatin indicates that it is part of the Z-band region of titin. Cell Motil Cytoskel 34:108–121CrossRefGoogle Scholar
  22. 22.
    Isaacs WB, Kim IS, Struve A, Fulton AB (1989) Biosynthesis of titin in cultured skeletal muscle cells. J Cell Biol 109:2189–2195PubMedCrossRefGoogle Scholar
  23. 23.
    Hill CS, Duran S, Lin ZX, Weber K, Holtzer H (1986) Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 103:2185–2196PubMedCrossRefGoogle Scholar
  24. 24.
    van der Loop FT, van der Ven PF, Furst DO, Gautel M, van Eys GJ, Ramaekers FC (1996) Integration of titin into the sarcomeres of cultured differentiating human skeletal muscle cells. Eur J Cell Biol 69:301–307PubMedGoogle Scholar
  25. 25.
    Fulton AB, Alftine C (1997) Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc & Func 22:51–58Google Scholar
  26. 26.
    Fulton AB (1993) Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem 52:148–152PubMedCrossRefGoogle Scholar
  27. 27.
    Fulton AB, Alftine C (1997) Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc & FunctGoogle Scholar
  28. 28.
    Cripe L, Morris E, Fulton AB (1993) Vimentin mRNA location changes during muscle development. Proc Natl Acad Sci USA 90:2724–2728PubMedCrossRefGoogle Scholar
  29. 29.
    Morris EJ, Fulton AB (1994) Rearrangement of mRNAs for costamere proteins during costamere development in cultured skeletal muscle from chicken. J Cell Sci 107:377–386PubMedGoogle Scholar
  30. 30.
    Taneja KL, Singer RH (1990) Detection and localization of actin mRNA isoforms in chicken muscle cells by in situ hybridization using biotinated oligonucleotide probes. J Cell Biochem 44:241–252PubMedCrossRefGoogle Scholar
  31. 31.
    Dix DJ, Eisenberg BR (1990) Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol 111:1885–1894PubMedCrossRefGoogle Scholar
  32. 32.
    Russell B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. [Review] [69 refs]. Am J Physiol 262:C1–C8PubMedGoogle Scholar
  33. 33.
    Isaacs WB, Kim IS, Struve A, Fulton AB (1992) Association of titin and myosin heavy chain in developing skeletal muscle. Proc Natl Acad Sci USA 89:7496–7500PubMedCrossRefGoogle Scholar
  34. 34.
    Isaacs WB, Fulton AB (1987) Cotranslational assembly of myosin heavy chain in developing cultured skeletal muscle. Proc Natl Acad Sci USA 84:6174–6178PubMedCrossRefGoogle Scholar
  35. 35.
    Lu MH, Dilullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, et al. (1992) The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022PubMedCrossRefGoogle Scholar
  36. 36.
    Forry-Schaudies S, Murray JM, Toyama Y, Holtzer H (1986) Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil Cytoskel 6:324–338CrossRefGoogle Scholar
  37. 37.
    Denning G, Fulton AB (1986) A simple trypsin resistance assay for muscle and other cell fusion. J Histochem Cytochemi 34:959–962Google Scholar
  38. 38.
    Holtzer H, Forry-Schaudies S, Dlugosz A, Antin P, Dubyak G (1985) Interactions between IFs, microtubules, and myofibrils in fibrogenic and myogenic cells. Ann NY Acad Sci 455:106–125PubMedCrossRefGoogle Scholar
  39. 39.
    Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, Dilullo C, et al. (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskel 29:1–19CrossRefGoogle Scholar
  40. 40.
    Lowrey AA, Kaufman SJ (1989) Membrane-cytoskeleton associations during myogenesis deviate from traditional definitions. Exp Cell Res 183:1–23PubMedCrossRefGoogle Scholar
  41. 41.
    De Petris S (1974) Inhibition and reversal of capping by cytochalasin B, vinblastine and colchicine. Nature 250:54–56PubMedCrossRefGoogle Scholar
  42. 42.
    Cheung HT, Cantarow WD, Sundharadas G (1978) Colchicine and cytochalasin B (CB) effects on random movement, spreading and adhesion of mouse macrophages. Exp Cell Res 111:95–103PubMedCrossRefGoogle Scholar
  43. 43.
    Solomon F, Magendantz M (1981) Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J Cell Biol 89:157–161PubMedCrossRefGoogle Scholar
  44. 44.
    Gard DL, Cha BJ, King E (1997) The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon Factin and microtubules. Dev Biol 184:95–114PubMedCrossRefGoogle Scholar
  45. 45.
    van Deurs B, von Bulow F, Vilhardt F, Holm PK, Sandvig K (1996) Destabilization of plasma membrane structure by prevention of actin polymerization. Microtubule-dependent tubulation of the plasma membrane. J Cell Sci 109:1655–1665PubMedGoogle Scholar
  46. 46.
    Ingber DE, Prusty D, Sun Z, Betensky H, Wang N (1995) Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 28:1471–1484PubMedCrossRefGoogle Scholar
  47. 47.
    Roy SG (1993) Role of stress fibers in the association of intermediate filaments with microtubules in fibroblast cells. Cell Biol Int 17:645–652PubMedCrossRefGoogle Scholar
  48. 48.
    Croop J, Holtzer H (1975) Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol 65:271–285PubMedCrossRefGoogle Scholar
  49. 49.
    Holtzer H, Croop J, Dienstman S, Ishikawa H, Somlyo AP (1975) Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci USA 72:513–517PubMedCrossRefGoogle Scholar
  50. 50.
    Puri EC, Chiquet M, Turner DC (1979) Fibronectin-independent myoblast fusion in suspension cultures. Biochem Biophys Res Commun 90:883–889PubMedCrossRefGoogle Scholar
  51. 51.
    Fischman DA (1970) The synthesis and assembly of myofibrils in embryonic muscle. Curr Top Dev Biol 5:235–280PubMedCrossRefGoogle Scholar
  52. 52.
    Shimada Y, Obinata T (1977) Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol 72:777–785PubMedCrossRefGoogle Scholar
  53. 53.
    Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW (1997) Zeugmatin is part of the Z-band targeting region of titin. Cell Struct Funct 22:73–82PubMedCrossRefGoogle Scholar
  54. 54.
    Schafer DA, Hug C, Cooper JA (1995) Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 128:61–70PubMedCrossRefGoogle Scholar
  55. 55.
    Roest PA, van der Tuijn AC, Ginjaar HB, Hoeben RC, Hoger-Vorst FB, Bakker E, et al. (1996) Application of in vitro Myo-differentiation of non-muscle cells to enhance gene expression and facilitate analysis of muscle proteins. Neuromuscul Disord 6:195–202PubMedCrossRefGoogle Scholar
  56. 56.
    Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 87:7988–7992PubMedCrossRefGoogle Scholar
  57. 57.
    Obermann WM, Gautel M, Weber K, Furst DO (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220PubMedCrossRefGoogle Scholar
  58. 58.
    Gautel M, Leonard K, Labeit S (1993) Phosphorylation of KSP motifs in the Cterminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834PubMedGoogle Scholar
  59. 59.
    Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627PubMedGoogle Scholar
  60. 60.
    Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, et al. (1994) Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150:173–224PubMedCrossRefGoogle Scholar
  61. 61.
    Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599PubMedCrossRefGoogle Scholar
  62. 62.
    Pickett-Heaps JD, Forer A, Spurck T (1997) Traction fibre: toward a “tensegral” model of the spindle. Cell Motil Cytoskeleton 37:1–6PubMedCrossRefGoogle Scholar
  63. 63.
    Stamenovic D, Fredberg JJ, Wang N, Butler JP, Ingber DE (1996) A microstructural approach to cytoskeletal mechanics based on tensegrity. J Theor Biol 181:125–136PubMedCrossRefGoogle Scholar
  64. 64.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127PubMedCrossRefGoogle Scholar
  65. 65.
    Bennett PM, Gautel M (1996) Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 259:896–903PubMedCrossRefGoogle Scholar
  66. 66.
    Kolmerer B, Olivieri N, Witt CC, Herrmann BG, Labeit S (1996) Genomic organization of M line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 256:556–563PubMedCrossRefGoogle Scholar
  67. 67.
    Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423PubMedGoogle Scholar
  68. 68.
    Dlugosz AA, Antin PB, Nachmias VT, Holtzer H (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278PubMedCrossRefGoogle Scholar
  69. 69.
    Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626PubMedGoogle Scholar
  70. 70.
    McDonald KA, Lakonishok M, Horwitz AF (1995) Alpha v and alpha 3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci 108:2573–2581PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. B. Fulton
    • 1
  1. 1.Department of BiochemistryUniversity of IowaIowa CityUSA

Personalised recommendations