Advertisement

The physiological role of titin in striated muscle

  • R. Horowits
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 138)

Keywords

Thin Filament Sarcomere Length Thick Filament Passive Tension Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akster HA, Granzier HLM, Focant B (1989) Differences in I band structure, sarcomere extensibility, and electrophoresis of titin between two muscle fiber types of the perch (Perca fluviatilis L.). J Ultrastruct Mol Struct Res 102:109–121CrossRefGoogle Scholar
  2. 2.
    Brady AJ, Farnsworth SP (1986) Cardiac myocyte stiffness following extraction with detergent and high salt solutions. Am J Physiol 250:h932–943PubMedGoogle Scholar
  3. 3.
    Carlsen F, Knappeis GG, Buchthal F (1961) Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol 11:95–117PubMedCrossRefGoogle Scholar
  4. 4.
    Erickson HP (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91:10114–10118PubMedCrossRefGoogle Scholar
  5. 5.
    Funatsu T, Higuchi H, Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62PubMedCrossRefGoogle Scholar
  6. 6.
    Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S (1993) Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 120:711–724PubMedCrossRefGoogle Scholar
  7. 7.
    Furst DO, Nave R, Osborn M, Weber K (1989) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectronmicroscopical study on myofibrils. J Cell Sci 94:119–125PubMedGoogle Scholar
  8. 8.
    Furst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572PubMedCrossRefGoogle Scholar
  9. 9.
    Gassner D (1986) Myofibrillar interaction of blot immunoaffinity-purified antibodies against native titin as studied by direct immunofluorescence and immunogold staining. Eur J Cell Biol 40:176–184PubMedGoogle Scholar
  10. 10.
    Gautel M, Goulding D (1996) A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–14PubMedCrossRefGoogle Scholar
  11. 11.
    Granzier H, Helmes M, Trombitas K (1996) Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 70:430–442PubMedCrossRefGoogle Scholar
  12. 12.
    Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044PubMedCrossRefGoogle Scholar
  13. 13.
    Granzier HL, Wang K (1993) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 65:2141–2159PubMedCrossRefGoogle Scholar
  14. 14.
    Grimby L, Hannerz J (1977) Firing rate and recruitment order of toe extensor motor units in different modes of voluntary conraction. J Physiol (Lond) 264:865–879Google Scholar
  15. 15.
    Hannerz J (1974) Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand 91:374–385PubMedCrossRefGoogle Scholar
  16. 16.
    Hattori A, Ishii T, Tatsumi R, Takahashi K (1995) Changes in the molecular types of connectin and nebulin during development of chicken skeletal muscle. Biochim Biophys Acta 1244:179–184PubMedGoogle Scholar
  17. 17.
    Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A, Schaper J (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26:1291–1306PubMedCrossRefGoogle Scholar
  18. 18.
    Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626PubMedGoogle Scholar
  19. 19.
    Higuchi H (1987) Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle. Biophys J 52:29–32PubMedCrossRefGoogle Scholar
  20. 20.
    Higuchi H (1992) Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle. J Biochem (Tokyo) 111:291–295Google Scholar
  21. 21.
    Higuchi H, Suzuki T, Kimura S, Yoshioka T, Maruyama K, Umazume Y (1992) Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. J Muscle Res Cell Motil 13:285–294PubMedCrossRefGoogle Scholar
  22. 22.
    Higuchi H, Umazume Y (1985) Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the Aand Ibands. Biophys J 48:137–147PubMedCrossRefGoogle Scholar
  23. 23.
    Higuchi H, Umazume Y (1986) Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J 50:385–389PubMedCrossRefGoogle Scholar
  24. 24.
    Higuchi H, Yoshioka T, Maruyama K (1988) Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments. J Muscle Res Cell Motil 9:491–498PubMedCrossRefGoogle Scholar
  25. 25.
    Hill C, Weber K (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle. J Cell Biol 102:1099–1108PubMedCrossRefGoogle Scholar
  26. 26.
    Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398PubMedCrossRefGoogle Scholar
  27. 27.
    Horowits R, Dalakas MC, Podolsky RJ (1990) Single skinned muscle fibers in Duchenne muscular dystrophy generate normal force. Ann Neurol 27:636–641PubMedCrossRefGoogle Scholar
  28. 28.
    Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164PubMedCrossRefGoogle Scholar
  29. 29.
    Horowits R, Maruyama K, Podolsky RJ (1989) Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle. J Cell Biol 109:2169–2176PubMedCrossRefGoogle Scholar
  30. 30.
    Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223PubMedCrossRefGoogle Scholar
  31. 31.
    Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171PubMedCrossRefGoogle Scholar
  32. 32.
    Hu DH, Kimura S, Maruyama K (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem (Tokyo) 99:1485–1492Google Scholar
  33. 33.
    Huxley AF, Peachey LD (1961) The maximum length for contraction in vertebrate striated muscle. J Physiol (Lond) 156:150–165Google Scholar
  34. 34.
    Ishiwata S, Yasuda K, Shindo Y, Fujita H (1996) Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils. Adv Biophys 33:135–142PubMedCrossRefGoogle Scholar
  35. 35.
    Itoh Y, Matsuura T, Kimura S, Maruyama K (1988) Absence of nebulin in cardiac muscles of the chicken embryo. Biomed Res 9:331–333Google Scholar
  36. 36.
    Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem (Tokyo) 104:504–508Google Scholar
  37. 37.
    Jewell BR (1977) A reexamination of the influence of muscle length on myocardial performance. Circ Res 40:221–230PubMedGoogle Scholar
  38. 38.
    Jin JP (1995) Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. I Biol Chem 270:6908–6916Google Scholar
  39. 39.
    Kawaguchi N, Fujitani N, Schaper J, Onishi S (1995) Pathological changes of myocardial cytoskeleton in cardiomyopathic hamster. Mol Cell Biochem 144:75–79PubMedCrossRefGoogle Scholar
  40. 40.
    Kawamura Y, Kume H, Itoh Y, Ohtsuka S, Kimura S, Maruyama K (1995) Localization of three fragments of connectin in chicken breast muscle sarcomeres. J Biochem (Tokyo) 117:201–207Google Scholar
  41. 41.
    Kellermayer MS, Granzier HL (1996) Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett 380:281–286PubMedCrossRefGoogle Scholar
  42. 42.
    Kellermayer MS, Granzier HL (1996) Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem Biophys Res Commun 221:491–497PubMedCrossRefGoogle Scholar
  43. 43.
    Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Foldingunfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116PubMedCrossRefGoogle Scholar
  44. 44.
    Kempner ES (1988) Molecular size determination of enzymes by radiation inactivation. Adv Enzymol Relat Areas Mol Biol 61:107–147PubMedCrossRefGoogle Scholar
  45. 45.
    Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. Embo J 11:1711–1716PubMedGoogle Scholar
  46. 46.
    Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedCrossRefGoogle Scholar
  47. 47.
    Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294PubMedGoogle Scholar
  48. 48.
    Li Q, Jin JP, Granzier HL (1995) The effect of genetically expressed cardiac titin fragments on in vitro actin motility. Biophys J 69:1508–1518PubMedCrossRefGoogle Scholar
  49. 49.
    Linke WA, Bartoo ML, Ivemeyer M, Pollack GH (1996) Limits of titin extension in single cardiac myofibrils. J Muscle Res Cell Motil 17:425–438PubMedCrossRefGoogle Scholar
  50. 50.
    Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M (1997) Actintitin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73:905–919PubMedCrossRefGoogle Scholar
  51. 51.
    Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71PubMedCrossRefGoogle Scholar
  52. 52.
    Linke WA, Ivemeyer M, Ruegg JC, Gautel M (1997) A physiological role for actin-titin interaction in cardiac myofibrils. Biophys J 72:A389CrossRefGoogle Scholar
  53. 53.
    Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67:782–792PubMedCrossRefGoogle Scholar
  54. 54.
    Locker RH, Daines GJ, Leet NG (1976) Histology of highly-stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during prerigor blending. J Ultrastruct Res 55:173–181PubMedCrossRefGoogle Scholar
  55. 55.
    Locker RH, Leet NG (1975) Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res 52:64–75PubMedCrossRefGoogle Scholar
  56. 56.
    Magid A, Law DJ (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282PubMedCrossRefGoogle Scholar
  57. 57.
    Magid A, Ting-Beall HP, Carvell M, Kontis T, Lucaveche C (1984) Connecting filaments, core filaments, and side-struts: a proposal to add three new loadbearing structures to the sliding filament model. Adv Exp Med Biol 170:307–328PubMedGoogle Scholar
  58. 58.
    Maruyama K (1986) Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol 104:81–114PubMedCrossRefGoogle Scholar
  59. 59.
    Maruyama K, Endo T, Kume H, Kawamura Y, Kanzawa N, Nakauchi Y, Kimura S, Kawashima S, Maruyama K (1993) A novel domain sequence of connectin localized at the I band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Commun 194:1288–1291PubMedCrossRefGoogle Scholar
  60. 60.
    Maruyama K, Kimura M, Kimura S, Ohashi K, Suzuki K, Katunuma N (1981) Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ. J Biochem (Tokyo) 89:711–715Google Scholar
  61. 61.
    Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of titin with connectin. J Biochem (Tokyo) 89:701–709Google Scholar
  62. 62.
    Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem (Tokyo) 95:1423–1433Google Scholar
  63. 63.
    Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S (1977) Connectin, an elastic protein of muscle. Characterization and Function. J Biochem (Tokyo) 82:317–337Google Scholar
  64. 64.
    Maruyama K, Sawada H, Kimura S, Ohashi K, Higuchi H, Umazume Y (1984) Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol 99:1391–1397PubMedCrossRefGoogle Scholar
  65. 65.
    Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S, Natori R (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 101:2167–2172PubMedCrossRefGoogle Scholar
  66. 66.
    Morano I, Hadicke K, Grom S, Koch A, Schwinger RH, Bohm M, Bartel S, Erdmann E, Krause EG (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26:361–368PubMedCrossRefGoogle Scholar
  67. 67.
    Natori R, Umazume Y, Natori R (1980) The elastic structure of sarcomere: the relation of connectin filaments with thick and thin filaments. Jikeikai Med J 27:83–97Google Scholar
  68. 68.
    Nave R, Furst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187PubMedCrossRefGoogle Scholar
  69. 69.
    Noble MI (1978) The Frank-Starling curve. Clin Sci Mol Med 54:1–7PubMedGoogle Scholar
  70. 70.
    Pate E, Cooke R (1991) Simulation of stochastic processes in motile crossbridge systems. J Muscle Res Cell Motil 12:376–393PubMedCrossRefGoogle Scholar
  71. 71.
    Pfuhl M, Gautel M, Politou AS, Joseph C, Pasture A (1995) Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin. J Biomol NMR 6:48–58PubMedCrossRefGoogle Scholar
  72. 72.
    Pierobon BS, Betto R, Salviati G (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil 10:446–456CrossRefGoogle Scholar
  73. 73.
    Pierobon BS, Biral D, Betto R, Salviati G (1992) Immunoelectron microscopic epitope locations of titin in rabbit heart muscle. J Muscle Res Cell Motil 13:35–38CrossRefGoogle Scholar
  74. 74.
    Podolsky RJ, Horowits R, Tanaka H (1991) Ordering mechanisms in striated muscle fibers. In: Ozawa E, Masaki T, Nabeshima Y (eds) Frontiers in muscle research. Elsevier Science Publishers, New York, NYGoogle Scholar
  75. 75.
    Politou AS, Gautel M, Improta S, Vangelista L, Pastore A (1996) The elastic Iband region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domains. J Mol Biol 255:604–616PubMedCrossRefGoogle Scholar
  76. 76.
    Politou AS, Gautel M, Pfuhl M, Labeit S, Pastore A (1994) Immunoglobulintype domains of titin: same fold, different stability? Biochemistry 33:4730–4737PubMedCrossRefGoogle Scholar
  77. 77.
    Politou AS, Thomas DJ, Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69:2601–2610PubMedCrossRefGoogle Scholar
  78. 78.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112PubMedCrossRefGoogle Scholar
  79. 79.
    Roos KP, Brady AJ (1989) Stiffness and shortening changes in myofilamentextracted rat cardiac myocytes. Am J Physiol 256:H539–551PubMedGoogle Scholar
  80. 80.
    Salviati G, Betto R, Ceoldo S, Pierobon BS (1990) Morphological and functional characterization of the endosarcomeric elastic filament. Am J Physiol 259:144–149Google Scholar
  81. 81.
    Sebestyen MG, Wolff JA, Greaser ML (1995) Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108:3029–3037PubMedGoogle Scholar
  82. 82.
    Sjostrand FS (1962) The connections between Aand I-band filaments in striated frog muscle. J Ultrastruct Res 7:225–246PubMedCrossRefGoogle Scholar
  83. 83.
    Soteriou A, Clarke A, Martin S, Trinick J (1993) Titin folding energy and elasticity. Proc R Soc Lond B Biol Sci 254:83–86CrossRefGoogle Scholar
  84. 84.
    Stedman H, Browning K, Oliver N, Oronzi-Scott M, Fischbeck K, Sarkar S, Sylvester J, Schmickel R, Wang K (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2:1–7PubMedCrossRefGoogle Scholar
  85. 85.
    Trinick J, Knight P, Whiting A (1984) Purification and properties of native titin. J Mol Biol 180:331–356PubMedCrossRefGoogle Scholar
  86. 86.
    Trinick JA (1981) End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol 151:309–314PubMedCrossRefGoogle Scholar
  87. 87.
    Trombitas K, Baatsen PH, Kellermayer MS, Pollack GH (1991) Nature and origin of gap filaments in striated muscle. J Cell Sci 100:809–814PubMedGoogle Scholar
  88. 88.
    Trombitas K, Granzier H (1997) Actin-titin interaction in the I-band of rat cardiac myocytes. Biophys J 72:A276Google Scholar
  89. 89.
    Trombitas K, Jin JP, Granzier H (1995) The mechanically active domain of titin in cardiac muscle. Circ Res 77:856–861PubMedGoogle Scholar
  90. 90.
    Trombitas K, Pollack GH (1993) Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 14:416–422PubMedCrossRefGoogle Scholar
  91. 91.
    Trombitas K, Pollack GH, Wright J, Wang K (1993) Elastic properties of titin filaments demonstrated using a freeze-break technique. Cell Motil Cytoskeleton 24:274–283PubMedCrossRefGoogle Scholar
  92. 92.
    Tskhovrebova L, Trinick J (1997) Direct visualization of extensibility in isolated titin molecules. J Mol Biol 265:100–106PubMedCrossRefGoogle Scholar
  93. 93.
    Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312PubMedCrossRefGoogle Scholar
  94. 94.
    Wang K (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil 6:315–369PubMedGoogle Scholar
  95. 95.
    Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105PubMedCrossRefGoogle Scholar
  96. 96.
    Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 64:1161–1177PubMedCrossRefGoogle Scholar
  97. 97.
    Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702PubMedCrossRefGoogle Scholar
  98. 98.
    Wang K, Ramirez MR, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81:3685–3689PubMedCrossRefGoogle Scholar
  99. 99.
    Wang K, Ramirez-Mitchell R (1983) A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol 96:562–570PubMedCrossRefGoogle Scholar
  100. 100.
    Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212PubMedCrossRefGoogle Scholar
  101. 101.
    Wang K, Wright J, Ramirez-Mitchell R (1984) Architecture of the titin/nebulin containing cytoskeletal lattice of the striated muscle sarcomere — evidence of elastic and inelastic domains of the bipolar filaments. J Cell Biol 99:435aCrossRefGoogle Scholar
  102. 102.
    Wang SM, Greaser ML (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil 6:293–312PubMedCrossRefGoogle Scholar
  103. 103.
    Wang SM, Sun MC, Jeng CJ (1991) Location of the C-terminus of titin at the Zline region in the sarcomere. Biochem Biophys Res Commun 176:189–193PubMedCrossRefGoogle Scholar
  104. 104.
    Warmolts JR, Engel WK (1972) Open-biopsy electromyography. I. Correlation of motor unit behavior with histochemical muscle fiber type in human limb muscle. Arch Neurol 27:512–517PubMedGoogle Scholar
  105. 105.
    Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268PubMedCrossRefGoogle Scholar
  106. 106.
    Yasuda K, Anazawa T, Ishiwata S (1995) Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J 68:598–608PubMedCrossRefGoogle Scholar
  107. 107.
    Yoshidomi H, Ohashi K, Maruyama K (1985) Changes in the molecular size of connectin, an elastic protein, in chicken skeletal muscle during embryonic and neonatal development. Biomed Res 6:207–212Google Scholar
  108. 108.
    Yoshioka T, Higuchi H, Kimura S, Ohashi K, Umazume Y, Maruyama K (1986) Effects of mild trypsin treatment on the passive tension generation and connectin splitting in stretched skinned fibers from frog skeletal muscle. Biomed Res 7:181–186Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • R. Horowits
    • 1
  1. 1.National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesda

Personalised recommendations