The physiological role of titin in striated muscle
Chapter
First Online:
- 26 Citations
- 63 Downloads
Keywords
Thin Filament Sarcomere Length Thick Filament Passive Tension Frog Skeletal Muscle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Akster HA, Granzier HLM, Focant B (1989) Differences in I band structure, sarcomere extensibility, and electrophoresis of titin between two muscle fiber types of the perch (Perca fluviatilis L.). J Ultrastruct Mol Struct Res 102:109–121CrossRefGoogle Scholar
- 2.Brady AJ, Farnsworth SP (1986) Cardiac myocyte stiffness following extraction with detergent and high salt solutions. Am J Physiol 250:h932–943PubMedGoogle Scholar
- 3.Carlsen F, Knappeis GG, Buchthal F (1961) Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol 11:95–117PubMedCrossRefGoogle Scholar
- 4.Erickson HP (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91:10114–10118PubMedCrossRefGoogle Scholar
- 5.Funatsu T, Higuchi H, Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62PubMedCrossRefGoogle Scholar
- 6.Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S (1993) Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 120:711–724PubMedCrossRefGoogle Scholar
- 7.Furst DO, Nave R, Osborn M, Weber K (1989) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectronmicroscopical study on myofibrils. J Cell Sci 94:119–125PubMedGoogle Scholar
- 8.Furst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572PubMedCrossRefGoogle Scholar
- 9.Gassner D (1986) Myofibrillar interaction of blot immunoaffinity-purified antibodies against native titin as studied by direct immunofluorescence and immunogold staining. Eur J Cell Biol 40:176–184PubMedGoogle Scholar
- 10.Gautel M, Goulding D (1996) A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–14PubMedCrossRefGoogle Scholar
- 11.Granzier H, Helmes M, Trombitas K (1996) Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 70:430–442PubMedCrossRefGoogle Scholar
- 12.Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044PubMedCrossRefGoogle Scholar
- 13.Granzier HL, Wang K (1993) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 65:2141–2159PubMedCrossRefGoogle Scholar
- 14.Grimby L, Hannerz J (1977) Firing rate and recruitment order of toe extensor motor units in different modes of voluntary conraction. J Physiol (Lond) 264:865–879Google Scholar
- 15.Hannerz J (1974) Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand 91:374–385PubMedCrossRefGoogle Scholar
- 16.Hattori A, Ishii T, Tatsumi R, Takahashi K (1995) Changes in the molecular types of connectin and nebulin during development of chicken skeletal muscle. Biochim Biophys Acta 1244:179–184PubMedGoogle Scholar
- 17.Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A, Schaper J (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26:1291–1306PubMedCrossRefGoogle Scholar
- 18.Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626PubMedGoogle Scholar
- 19.Higuchi H (1987) Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle. Biophys J 52:29–32PubMedCrossRefGoogle Scholar
- 20.Higuchi H (1992) Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle. J Biochem (Tokyo) 111:291–295Google Scholar
- 21.Higuchi H, Suzuki T, Kimura S, Yoshioka T, Maruyama K, Umazume Y (1992) Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. J Muscle Res Cell Motil 13:285–294PubMedCrossRefGoogle Scholar
- 22.Higuchi H, Umazume Y (1985) Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the Aand Ibands. Biophys J 48:137–147PubMedCrossRefGoogle Scholar
- 23.Higuchi H, Umazume Y (1986) Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J 50:385–389PubMedCrossRefGoogle Scholar
- 24.Higuchi H, Yoshioka T, Maruyama K (1988) Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments. J Muscle Res Cell Motil 9:491–498PubMedCrossRefGoogle Scholar
- 25.Hill C, Weber K (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle. J Cell Biol 102:1099–1108PubMedCrossRefGoogle Scholar
- 26.Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398PubMedCrossRefGoogle Scholar
- 27.Horowits R, Dalakas MC, Podolsky RJ (1990) Single skinned muscle fibers in Duchenne muscular dystrophy generate normal force. Ann Neurol 27:636–641PubMedCrossRefGoogle Scholar
- 28.Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164PubMedCrossRefGoogle Scholar
- 29.Horowits R, Maruyama K, Podolsky RJ (1989) Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle. J Cell Biol 109:2169–2176PubMedCrossRefGoogle Scholar
- 30.Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223PubMedCrossRefGoogle Scholar
- 31.Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171PubMedCrossRefGoogle Scholar
- 32.Hu DH, Kimura S, Maruyama K (1986) Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem (Tokyo) 99:1485–1492Google Scholar
- 33.Huxley AF, Peachey LD (1961) The maximum length for contraction in vertebrate striated muscle. J Physiol (Lond) 156:150–165Google Scholar
- 34.Ishiwata S, Yasuda K, Shindo Y, Fujita H (1996) Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils. Adv Biophys 33:135–142PubMedCrossRefGoogle Scholar
- 35.Itoh Y, Matsuura T, Kimura S, Maruyama K (1988) Absence of nebulin in cardiac muscles of the chicken embryo. Biomed Res 9:331–333Google Scholar
- 36.Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem (Tokyo) 104:504–508Google Scholar
- 37.Jewell BR (1977) A reexamination of the influence of muscle length on myocardial performance. Circ Res 40:221–230PubMedGoogle Scholar
- 38.Jin JP (1995) Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. I Biol Chem 270:6908–6916Google Scholar
- 39.Kawaguchi N, Fujitani N, Schaper J, Onishi S (1995) Pathological changes of myocardial cytoskeleton in cardiomyopathic hamster. Mol Cell Biochem 144:75–79PubMedCrossRefGoogle Scholar
- 40.Kawamura Y, Kume H, Itoh Y, Ohtsuka S, Kimura S, Maruyama K (1995) Localization of three fragments of connectin in chicken breast muscle sarcomeres. J Biochem (Tokyo) 117:201–207Google Scholar
- 41.Kellermayer MS, Granzier HL (1996) Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett 380:281–286PubMedCrossRefGoogle Scholar
- 42.Kellermayer MS, Granzier HL (1996) Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem Biophys Res Commun 221:491–497PubMedCrossRefGoogle Scholar
- 43.Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Foldingunfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116PubMedCrossRefGoogle Scholar
- 44.Kempner ES (1988) Molecular size determination of enzymes by radiation inactivation. Adv Enzymol Relat Areas Mol Biol 61:107–147PubMedCrossRefGoogle Scholar
- 45.Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. Embo J 11:1711–1716PubMedGoogle Scholar
- 46.Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedCrossRefGoogle Scholar
- 47.Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294PubMedGoogle Scholar
- 48.Li Q, Jin JP, Granzier HL (1995) The effect of genetically expressed cardiac titin fragments on in vitro actin motility. Biophys J 69:1508–1518PubMedCrossRefGoogle Scholar
- 49.Linke WA, Bartoo ML, Ivemeyer M, Pollack GH (1996) Limits of titin extension in single cardiac myofibrils. J Muscle Res Cell Motil 17:425–438PubMedCrossRefGoogle Scholar
- 50.Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M (1997) Actintitin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73:905–919PubMedCrossRefGoogle Scholar
- 51.Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71PubMedCrossRefGoogle Scholar
- 52.Linke WA, Ivemeyer M, Ruegg JC, Gautel M (1997) A physiological role for actin-titin interaction in cardiac myofibrils. Biophys J 72:A389CrossRefGoogle Scholar
- 53.Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67:782–792PubMedCrossRefGoogle Scholar
- 54.Locker RH, Daines GJ, Leet NG (1976) Histology of highly-stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during prerigor blending. J Ultrastruct Res 55:173–181PubMedCrossRefGoogle Scholar
- 55.Locker RH, Leet NG (1975) Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res 52:64–75PubMedCrossRefGoogle Scholar
- 56.Magid A, Law DJ (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282PubMedCrossRefGoogle Scholar
- 57.Magid A, Ting-Beall HP, Carvell M, Kontis T, Lucaveche C (1984) Connecting filaments, core filaments, and side-struts: a proposal to add three new loadbearing structures to the sliding filament model. Adv Exp Med Biol 170:307–328PubMedGoogle Scholar
- 58.Maruyama K (1986) Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol 104:81–114PubMedCrossRefGoogle Scholar
- 59.Maruyama K, Endo T, Kume H, Kawamura Y, Kanzawa N, Nakauchi Y, Kimura S, Kawashima S, Maruyama K (1993) A novel domain sequence of connectin localized at the I band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Commun 194:1288–1291PubMedCrossRefGoogle Scholar
- 60.Maruyama K, Kimura M, Kimura S, Ohashi K, Suzuki K, Katunuma N (1981) Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ. J Biochem (Tokyo) 89:711–715Google Scholar
- 61.Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of titin with connectin. J Biochem (Tokyo) 89:701–709Google Scholar
- 62.Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem (Tokyo) 95:1423–1433Google Scholar
- 63.Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S (1977) Connectin, an elastic protein of muscle. Characterization and Function. J Biochem (Tokyo) 82:317–337Google Scholar
- 64.Maruyama K, Sawada H, Kimura S, Ohashi K, Higuchi H, Umazume Y (1984) Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol 99:1391–1397PubMedCrossRefGoogle Scholar
- 65.Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S, Natori R (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 101:2167–2172PubMedCrossRefGoogle Scholar
- 66.Morano I, Hadicke K, Grom S, Koch A, Schwinger RH, Bohm M, Bartel S, Erdmann E, Krause EG (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26:361–368PubMedCrossRefGoogle Scholar
- 67.Natori R, Umazume Y, Natori R (1980) The elastic structure of sarcomere: the relation of connectin filaments with thick and thin filaments. Jikeikai Med J 27:83–97Google Scholar
- 68.Nave R, Furst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187PubMedCrossRefGoogle Scholar
- 69.Noble MI (1978) The Frank-Starling curve. Clin Sci Mol Med 54:1–7PubMedGoogle Scholar
- 70.Pate E, Cooke R (1991) Simulation of stochastic processes in motile crossbridge systems. J Muscle Res Cell Motil 12:376–393PubMedCrossRefGoogle Scholar
- 71.Pfuhl M, Gautel M, Politou AS, Joseph C, Pasture A (1995) Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin. J Biomol NMR 6:48–58PubMedCrossRefGoogle Scholar
- 72.Pierobon BS, Betto R, Salviati G (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil 10:446–456CrossRefGoogle Scholar
- 73.Pierobon BS, Biral D, Betto R, Salviati G (1992) Immunoelectron microscopic epitope locations of titin in rabbit heart muscle. J Muscle Res Cell Motil 13:35–38CrossRefGoogle Scholar
- 74.Podolsky RJ, Horowits R, Tanaka H (1991) Ordering mechanisms in striated muscle fibers. In: Ozawa E, Masaki T, Nabeshima Y (eds) Frontiers in muscle research. Elsevier Science Publishers, New York, NYGoogle Scholar
- 75.Politou AS, Gautel M, Improta S, Vangelista L, Pastore A (1996) The elastic Iband region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domains. J Mol Biol 255:604–616PubMedCrossRefGoogle Scholar
- 76.Politou AS, Gautel M, Pfuhl M, Labeit S, Pastore A (1994) Immunoglobulintype domains of titin: same fold, different stability? Biochemistry 33:4730–4737PubMedCrossRefGoogle Scholar
- 77.Politou AS, Thomas DJ, Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69:2601–2610PubMedCrossRefGoogle Scholar
- 78.Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112PubMedCrossRefGoogle Scholar
- 79.Roos KP, Brady AJ (1989) Stiffness and shortening changes in myofilamentextracted rat cardiac myocytes. Am J Physiol 256:H539–551PubMedGoogle Scholar
- 80.Salviati G, Betto R, Ceoldo S, Pierobon BS (1990) Morphological and functional characterization of the endosarcomeric elastic filament. Am J Physiol 259:144–149Google Scholar
- 81.Sebestyen MG, Wolff JA, Greaser ML (1995) Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108:3029–3037PubMedGoogle Scholar
- 82.Sjostrand FS (1962) The connections between Aand I-band filaments in striated frog muscle. J Ultrastruct Res 7:225–246PubMedCrossRefGoogle Scholar
- 83.Soteriou A, Clarke A, Martin S, Trinick J (1993) Titin folding energy and elasticity. Proc R Soc Lond B Biol Sci 254:83–86CrossRefGoogle Scholar
- 84.Stedman H, Browning K, Oliver N, Oronzi-Scott M, Fischbeck K, Sarkar S, Sylvester J, Schmickel R, Wang K (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2:1–7PubMedCrossRefGoogle Scholar
- 85.Trinick J, Knight P, Whiting A (1984) Purification and properties of native titin. J Mol Biol 180:331–356PubMedCrossRefGoogle Scholar
- 86.Trinick JA (1981) End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol 151:309–314PubMedCrossRefGoogle Scholar
- 87.Trombitas K, Baatsen PH, Kellermayer MS, Pollack GH (1991) Nature and origin of gap filaments in striated muscle. J Cell Sci 100:809–814PubMedGoogle Scholar
- 88.Trombitas K, Granzier H (1997) Actin-titin interaction in the I-band of rat cardiac myocytes. Biophys J 72:A276Google Scholar
- 89.Trombitas K, Jin JP, Granzier H (1995) The mechanically active domain of titin in cardiac muscle. Circ Res 77:856–861PubMedGoogle Scholar
- 90.Trombitas K, Pollack GH (1993) Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 14:416–422PubMedCrossRefGoogle Scholar
- 91.Trombitas K, Pollack GH, Wright J, Wang K (1993) Elastic properties of titin filaments demonstrated using a freeze-break technique. Cell Motil Cytoskeleton 24:274–283PubMedCrossRefGoogle Scholar
- 92.Tskhovrebova L, Trinick J (1997) Direct visualization of extensibility in isolated titin molecules. J Mol Biol 265:100–106PubMedCrossRefGoogle Scholar
- 93.Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312PubMedCrossRefGoogle Scholar
- 94.Wang K (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil 6:315–369PubMedGoogle Scholar
- 95.Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105PubMedCrossRefGoogle Scholar
- 96.Wang K, McCarter R, Wright J, Beverly J, Ramirez MR (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 64:1161–1177PubMedCrossRefGoogle Scholar
- 97.Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702PubMedCrossRefGoogle Scholar
- 98.Wang K, Ramirez MR, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81:3685–3689PubMedCrossRefGoogle Scholar
- 99.Wang K, Ramirez-Mitchell R (1983) A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol 96:562–570PubMedCrossRefGoogle Scholar
- 100.Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212PubMedCrossRefGoogle Scholar
- 101.Wang K, Wright J, Ramirez-Mitchell R (1984) Architecture of the titin/nebulin containing cytoskeletal lattice of the striated muscle sarcomere — evidence of elastic and inelastic domains of the bipolar filaments. J Cell Biol 99:435aCrossRefGoogle Scholar
- 102.Wang SM, Greaser ML (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil 6:293–312PubMedCrossRefGoogle Scholar
- 103.Wang SM, Sun MC, Jeng CJ (1991) Location of the C-terminus of titin at the Zline region in the sarcomere. Biochem Biophys Res Commun 176:189–193PubMedCrossRefGoogle Scholar
- 104.Warmolts JR, Engel WK (1972) Open-biopsy electromyography. I. Correlation of motor unit behavior with histochemical muscle fiber type in human limb muscle. Arch Neurol 27:512–517PubMedGoogle Scholar
- 105.Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268PubMedCrossRefGoogle Scholar
- 106.Yasuda K, Anazawa T, Ishiwata S (1995) Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J 68:598–608PubMedCrossRefGoogle Scholar
- 107.Yoshidomi H, Ohashi K, Maruyama K (1985) Changes in the molecular size of connectin, an elastic protein, in chicken skeletal muscle during embryonic and neonatal development. Biomed Res 6:207–212Google Scholar
- 108.Yoshioka T, Higuchi H, Kimura S, Ohashi K, Umazume Y, Maruyama K (1986) Effects of mild trypsin treatment on the passive tension generation and connectin splitting in stretched skinned fibers from frog skeletal muscle. Biomed Res 7:181–186Google Scholar
Copyright information
© Springer-Verlag 1999