Advertisement

The titin cDNA sequence and partial genomic sequences: Insights into the molecular genetics, cell biology and physiology of the titin filament system

  • B. Kolmerer
  • C. C. Witt
  • A. Freiburg
  • S. Millevoi
  • G. Stier
  • H. Sorimachi
  • K. Pelin
  • L. Carrier
  • K. Schwartz
  • D. Labeit
  • C. C. Gregorio
  • W. A. Linke
  • S. Labeit
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 138)

Keywords

Thick Filament Nemaline Myopathy Partial Genomic Sequence Familial Hypertrophic Cardiomyopathy Titin Isoforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarli JA, Stefansson K, Marton LSG & Wollmann RL (1990) Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin. Clin Exp Immunol 82:284–288PubMedGoogle Scholar
  2. Beggs AH, Byers TJ, Knoll JHM, Boyce FM, Bruns GAP & Kunkel LM (1992) Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267:9281–9288PubMedGoogle Scholar
  3. Bennett PM & Gautel M (1996) Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament. J Mol Biol 255:604–616CrossRefGoogle Scholar
  4. Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Weissenbach J, Vosberg HP, Fiszman M, Komajda M & Schwartz K (1995) Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genetics 11:438–440PubMedCrossRefGoogle Scholar
  5. Carrier L, Bonne G, Bährend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour J-B, Dubourg O, Desnos M, Hagège AA, Trent RJ, Komajda M, Fiszman M & Schwartz K (1997) Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res 80:427–434PubMedGoogle Scholar
  6. Cox DR (1995) Mapping with radiation hybrids. Genome Digest 4:14–15Google Scholar
  7. Craig R & Offer G (1976) The location of C-protein in rabbit skeletal muscle. Proc R Soc Ser B 192:325–332Google Scholar
  8. Craig R (1977) Structure of A-segments from frog and rabbit skeletal muscle. J Mol Biol 109:69–81PubMedCrossRefGoogle Scholar
  9. Fields S & Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  10. Freiburg A & Gautel M (1996) A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323PubMedCrossRefGoogle Scholar
  11. Fürst DO, Osborn M, Nave R & Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572PubMedCrossRefGoogle Scholar
  12. Fulton AB & Isaacs WB (1991) Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. Bioessays 13:157–61PubMedCrossRefGoogle Scholar
  13. Funatsu T, Higuchi H & Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62PubMedCrossRefGoogle Scholar
  14. Gautel M & Goulding D (1996) A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–4PubMedCrossRefGoogle Scholar
  15. Gautel M, Leonard K & Labeit S (1993a) Phosphorylation of KSP-motifs in the Cterminal region of titin in differentiating myoblasts. EMBO J 12:3827–3834PubMedGoogle Scholar
  16. Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, Labeit S, Mygland A, Gilhus N E & Aarli J (1993b) Titin antibodies in myasthenia gravis: Identification of a major auto-immunogenic region of titin. Neurology 43:1581–1585PubMedGoogle Scholar
  17. Gautel M, Zuffardi O, Freiburg A & Labeit S (1995) A cooperative phosphorylation switch in human cardiac myosin-binding protein C specific for the cardiac isoform: A modulator of cardiac contraction? EMBO J 14:1952–1960PubMedGoogle Scholar
  18. Gautel M, Goulding D, Bullard B, Weber K & Fürst DO (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754PubMedGoogle Scholar
  19. Goldstein MA, Michael LH, Schroeter JP & Sass RL (1986) The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J Muscle Res Cell Motil 7:527–536PubMedCrossRefGoogle Scholar
  20. Goldstein MA, Michael LH, Schroeter JP & Sass RL (1989) Two structural states of Zbands in cardiac muscle. Am J Physiol (Heart Circ Physiol) 256:H552–H559Google Scholar
  21. Granzier HL & Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules and intermediate filaments. Biophys J 68:1027–1044PubMedGoogle Scholar
  22. Horowits R, Kempner ES, Bisher ME & Podolski RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323:160–164PubMedCrossRefGoogle Scholar
  23. Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:392–398PubMedCrossRefGoogle Scholar
  24. Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi, H, Sawada H, Shimizu TM & Maruyama K (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 104:504–508PubMedGoogle Scholar
  25. Improta S, Politou AS & Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4:323–337PubMedCrossRefGoogle Scholar
  26. Kinbara K, Sorimachi H, Ishiura S & Suzuki K (1997) Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 342:99–107PubMedCrossRefGoogle Scholar
  27. Kolmerer B, Olivieri N, Herrmann BG & Labeit S (1996a) A systematic search of the data bases for sequences homologous to titin/connectin. Advances in Biophysics 33:3–11PubMedCrossRefGoogle Scholar
  28. Kolmerer B, Olivieri N, Herrmann BG & Labeit S (1996b) Genomic organization of the M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 256:556–563PubMedCrossRefGoogle Scholar
  29. Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale J, Whiting A & Trinick J (1990) A regular pattern of two types of 100residue motif in the sequence of titin. Nature 345:273–276PubMedCrossRefGoogle Scholar
  30. Labeit S, Gautel M, Lakey A & Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716PubMedGoogle Scholar
  31. Labeit S & Kolmerer B (1995) Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedCrossRefGoogle Scholar
  32. Labeit S, Kolmerer B & Linke WA (1997) The giant protein titin: Emerging roles in physiology and pathophysiology. Circ Res 80:290–294PubMedGoogle Scholar
  33. Laing NG, Wilton SD, Akkari PA, Boundy K, Kneebone C, Blumbergs P, White S, Watkins H, Love DR & Haan E (1995) A mutation in the a-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nature Genet 9:75–79PubMedCrossRefGoogle Scholar
  34. Linke WA, Bartoo, ML & Pollack GH (1993) Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrils. Circ Res 73:724–734PubMedGoogle Scholar
  35. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC & Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71PubMedCrossRefGoogle Scholar
  36. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Rüegg JC & Gautel M (1997) Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73:905–919PubMedGoogle Scholar
  37. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S & Eguchi G (1977) Connectin, an elastic protein of muscle: characterization and function. J Biochem (Tokyo) 82:317–337Google Scholar
  38. Maruyama K, Sawada H, Kimura S, Ohashi K, Higuchi H & Umazume Y (1984) Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol 99:1391–1397PubMedCrossRefGoogle Scholar
  39. Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S & Natori R (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron miscroscopy. J Cell Biol 101:2167–2172PubMedCrossRefGoogle Scholar
  40. Müller-Seitz M, Kaupmann K, Labeit S & Jockusch H (1993) Chromosomal localization of the mouse titin gene and its relation to “muscular dystrophy with myositis” and nebulin genes on chromosome 2. Genomics 18:559–561PubMedCrossRefGoogle Scholar
  41. Obermann WMJ, Gautel, M, Steiner, F, vanderVeen, PFM, Weber, K & Fürst DO (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M protein, and the 250 kD carboxy terminal region of titin by immunoelectron microscopy. J Cell Biol 134:1441–1453PubMedCrossRefGoogle Scholar
  42. Ohtsuka H, Yajima H, Maruyama K & Kimura S (1997a) Binding of the N-terminal 63 kDa portion of connectin/titin to alpha-actinin as revealed by the yeast twohybrid system. FEBS Lett 401:65–67PubMedCrossRefGoogle Scholar
  43. Ohtsuka H, Yajima H, Maruyama K & Kimura S (1997b) The N-terminal Z repeat 5 of connectin/titin binds to the C-terminal region of alpha-actinin. Biochem Biophys Res Commun. 235:1–3PubMedCrossRefGoogle Scholar
  44. Pelin K, Ridanpää M, Donner K, Wilton, S, Krishnarajah J, Laing N, Kolmerer B, Millevoi S, Labeit S, de la Chapelle A & Wallgren-Pettersson C (1997) Refined localization of the genes for nebulin and titin on chromosome 2q allows the assignment of nebulin as a candidate gene for autosomal recessive nemaline myopathy. Eur J Hum Genet 5:229–234PubMedGoogle Scholar
  45. Pfuhl M & Pastore A (1995) Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set. Structure 3:391–401PubMedCrossRefGoogle Scholar
  46. Politou A, Thomas DJ & Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J69:2601–2610PubMedGoogle Scholar
  47. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C, Hillaire D, Passos-Bueno MR, Zatz M, Tischfield JA, Fardeau M, Jackson CE, Cohen D & Beckmann JS (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy 2A. Cell 81: 27–40PubMedCrossRefGoogle Scholar
  48. Rossi E, Faiella A, Zeviani M, Labeit S, Floridia G, Brunelli S, Cammarata M, Boncinelli E & Zuffardi O (1994) Order of six loci at 2q24-q31 and orientation of the HOXD locus. Genomics 24:34–40PubMedCrossRefGoogle Scholar
  49. Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Fischer C, Vollrath B, Mall G, Dietz R, Kübler W & Katus H (1997) A novel splice donor site mutation in the cardiac myosin binding protein-C gene in familial hypertrophic cardiomyopathy: Characterization of cardiac transcript and protein. J Clin Invest 100:475–482PubMedCrossRefGoogle Scholar
  50. Saiki RK, Scharf SJ, Faloona F, Mullis GT & Erlich HA (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  51. Salviati G, Betto R, Ceoldo S & Pierobon-Bormioli S (1990) Morphological and functional characterization of the endosarcomeric elastic filament. Am J Physiol 259:C144–C149PubMedGoogle Scholar
  52. Schroeter JP, Bretaudiere JP, Sass RL & Goldstein MA (1996) Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. J Cell Biol 133:571–583PubMedCrossRefGoogle Scholar
  53. Schultheiss T, Lin, Z, Lu M-H, Murray J, Fischman DA, Weber K, Masaki M, Imamura M & Holtzer H (1992a) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172CrossRefGoogle Scholar
  54. Schultheiss T, Choi J, Lin ZX, DiLullo C, Fischman DA & Holtzer H (1992b) A sarcomeric alpha-actinin truncated at the carboxyterminal end induces the breakdown of stress fibers in PtK2 cells and the formation of nemaline-like bodies and breakdown of myofibrils in myotubes. Proc Natl Acad Sci USA 89:9282–9286.PubMedCrossRefGoogle Scholar
  55. Schwartz K, Carrier L, Guicheney P & Komajda M (1995) The molecular basis of cardiomyopathies. Circulation 91:532–540PubMedGoogle Scholar
  56. Sebestyan MG, Wolff JA & Greaser ML (1995) Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108:3029–3037Google Scholar
  57. Sjöström M & Squire JM (1977) Fine structure of the A-band in cryosections. J Mol Biol 109:49–68PubMedCrossRefGoogle Scholar
  58. Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K & Suzuki K (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162PubMedCrossRefGoogle Scholar
  59. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, Labeit D, Linke WA, Suzuki K & Labeit S (1997) Tissue-specific expression and alphaactinin binding properties of the Z disc titin. Implications for the nature of vertebrate Z discs. J Mol Biol 270:688–695PubMedCrossRefGoogle Scholar
  60. Squire JM (1981) The structural basis of muscular contraction. New York, Plenum PressGoogle Scholar
  61. Squire JM (1997) Architecture and function in the muscle sarcomere. Curr Opinion Struct Biol 7: 247–257CrossRefGoogle Scholar
  62. Thierfelder L, Watkins H, McRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG & Seidman CE (1994) Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77:701–712PubMedCrossRefGoogle Scholar
  63. Tokuyasu KT & Maher PA (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801PubMedCrossRefGoogle Scholar
  64. Trinick J (1994) Titin and nebulin: protein rulers in muscle? Trends in Biochem Sciences 19: 405–409CrossRefGoogle Scholar
  65. Trinick J (1996) Cytoskeleton — titin as a scaffold and a spring. Curr Biol 6:258–260PubMedCrossRefGoogle Scholar
  66. Trombitas K & Pollack GH (1993) Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 14:416–422PubMedCrossRefGoogle Scholar
  67. Tskhovrebova L & Trinick J (1997) Direct visualization of extensibility in isolated titin molecules. J Mol Biol 265:100–106PubMedCrossRefGoogle Scholar
  68. Vigoreaux JO (1994) The muscle Z band: lessons in stress management. J Muscle Res Cell Motil 15:237–255PubMedGoogle Scholar
  69. Vikstrom KL & Leinwand LA (1996) Contractile protein mutations and heart disease. Curr Opin Cell Biol 8:97–105PubMedCrossRefGoogle Scholar
  70. Wallgren-Pettersson C, Avela K, Marchand S, Kolehmainen J, Tahvanainen E, Juul Hansen F, Muntoni F, Dubowitz V, de Visser M, Van Langen IM, Laing NG, Faure S & de la Chapelle A (1995) A gene for autosomal recessive nemaline myopathy assigned to chromosome 2q by linkage analysis. Neuromusc Disord 5:441–443PubMedCrossRefGoogle Scholar
  71. Wang K, McClure J & Tu A (1979) Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702PubMedCrossRefGoogle Scholar
  72. Wang K, Ramirez-Mitchell R & Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81:3685–3689PubMedCrossRefGoogle Scholar
  73. Wang K, McCarter R, Wright J, Beverly J & Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: A test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105PubMedCrossRefGoogle Scholar
  74. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG & Seidman CE (1995) Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet 11: 434–437PubMedCrossRefGoogle Scholar
  75. Watkins H, Seidman JG & Seidman CE (1995) Familial hypertrophic cardiomyopathy: a genetic model of cardiac hypertrophy. Hum Mol Genet 4:1721–1727PubMedCrossRefGoogle Scholar
  76. Whiting A, Wardale J & Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:163–169CrossRefGoogle Scholar
  77. Yajima H, Ohtsuka H, Kawamura Y, Kume H, Murayama T, Abe H, Kimura S & Maruyama K (1996) A 11.5 kb 5′-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region. Biochem Biophys Res Commun 223:160–164PubMedCrossRefGoogle Scholar
  78. Yamaguchi M, Izumimoto M, Robson RM & Stromer MH (1985) Fine Structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol 184:621–644PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • B. Kolmerer
    • 1
  • C. C. Witt
    • 1
  • A. Freiburg
    • 2
  • S. Millevoi
    • 1
  • G. Stier
    • 1
  • H. Sorimachi
    • 3
  • K. Pelin
    • 4
  • L. Carrier
    • 5
  • K. Schwartz
    • 5
  • D. Labeit
    • 2
  • C. C. Gregorio
    • 6
  • W. A. Linke
    • 7
  • S. Labeit
    • 1
    • 2
  1. 1.EMBL HeidelbergHeidelbergGermany
  2. 2.Universitätsklinikum MannheimMannheimGermany
  3. 3.Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  4. 4.Department of Medical GeneticsUniversity of Helsinki and the Folkhälsan Institute of GeneticsHelsinkiFinland
  5. 5.Unite de Recherches 153 de l’INSERM, Institut de Myologie, Rue du Mur des Fermiers GenereauxGroupe Hospitalier Pitié-SalpetrièreParis cedex 13France
  6. 6.Department of Cell Biology and AnatomyUniversity of Arizona, School of MedicineTucsonUSA
  7. 7.Physiologie IIUniversität HeidelbergHeidelbergGermany

Personalised recommendations