Skip to main content

Quantum phases and phase transitions of Mott insulators

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 645))

Abstract

This article contains a theoretical overview of the physical properties of antiferromagnetic Mott insulators in spatial dimensions greater than one. Many such materials have been experimentally studied in the past decade and a half, and we make contact with these studies. Mott insulators in the simplest class have an even number of S=1/2 spins per unit cell, and these can be described with quantitative accuracy by the bond operator method: we discuss their spin gap and magnetically ordered states, and the transitions between them driven by pressure or an applied magnetic field. The case of an odd number of S=1/2 spins per unit cell is more subtle: here the spin gap state can spontaneously develop bond order (so the ground state again has an even number of S=1/2 spins per unit cell), and/or acquire topological order and fractionalized excitations. We describe the conditions under which such spin gap states can form, and survey recent theories of the quantum phase transitions among these states and magnetically ordered states. We describe the breakdown of the Landau-Ginzburg-Wilson paradigm at these quantum critical points, accompanied by the appearance of emergent gauge excitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi, M. Sato, T. Nishioka, M. Kotani, and S. Sano, J. Phys. Soc. Jpn. 64, 2758 (1995).

    Article  ADS  Google Scholar 

  2. G. Chaboussant, P. A. Crowell, L. P. Lévy, O. Piovesana, A. Madouri, and D. Mailly, Phys. Rev. B 55, 3046 (1997).

    Article  ADS  Google Scholar 

  3. P. R. Hammar, D. H. Reich, C. Broholm, and F. Trouw, Phys. Rev. B 57, 7846 (1998).

    Article  ADS  Google Scholar 

  4. M. B. Stone, Y. Chen, J. Rittner, H. Yardimci, D. H. Reich, C. Broholm, D. V. Ferraris, and T. Lectka, Phys. Rev. B 65, 064423 (2002).

    Article  ADS  Google Scholar 

  5. H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999).

    Article  ADS  Google Scholar 

  6. H. Kageyama, M. Nishi, N. Aso, K. Onizuka, T. Yosihama, K. Nukui, K. Kodama, K. Kakurai, and Y. Ueda, Phys. Rev. Lett 84, 5876 (2000).

    Article  ADS  Google Scholar 

  7. H. Tanaka, A. Oosawa, T. Kato, H. Uekusa, Y. Ohashi, K. Kakurai, and A. Hoser, J. Phys. Soc. Jpn. 70, 939 (2001).

    Article  ADS  Google Scholar 

  8. A. Oosawa, M. Fujisawa, T. Osakabe, K. Kakurai, and H. Tanaka, J. Phys. Soc. Jpn 72, 1026 (2003).

    Article  ADS  Google Scholar 

  9. Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, and P. Vorderwisch, Nature (London) 423, 62 (2003).

    Article  ADS  Google Scholar 

  10. M. Matsumoto, B. Normand, T. M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, 077203 (2002) and cond-mat/0309440.

    Article  ADS  Google Scholar 

  11. R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylezynski, Phys. Rev. Lett. 86, 1335 (2001).

    Article  ADS  Google Scholar 

  12. R. Coldea, D. A. Tennant, and Z. Tylezynski, Phys. Rev. B 68, 134424 (2003).

    Article  ADS  Google Scholar 

  13. Insulators with an even number of electrons per unit cell can be adiabatically connected to band insulators and so some readers may object to calling such materials ‘Mott insulators'. However, the very different energy scales of the spin and charge excitations in the experimental systems are best understood in the framework of the Mott theory and one regards the dimerization as a small, low energy, deformation. Following widely accepted practice, we will continue to label these materials Mott insulators.

    Google Scholar 

  14. S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).

    Article  ADS  Google Scholar 

  15. A. V. Chubukov and Th. Jolicoeur, Phys. Rev. B 44, 12050 (1991).

    Article  ADS  Google Scholar 

  16. V. N. Kotov, O. Sushkov, Z. Weihong, and J. Oitmaa, Phys. Rev. Lett. 80 5790 (1998).

    Article  ADS  Google Scholar 

  17. G. Misguich and C. Lhuillier in Frustrated spin systems. H. T. Diep ed., World-Scientific, Singapore (2003), cond-mat/0310405.

    Google Scholar 

  18. The theorem of E. H. Lieb, T. Schultz, and D. J. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961) prohibits spin gap states in d=1 systems with S=1/2 per unit cell and no broken translational symmetry. For d>1, the topological order to be discussed in Sect. 9.5 enables evasion of these constraints, as discussed e.g. in Appendix A of T. Senthil, M. Vojta, and S. Sachdev, cond-mat/0305193. and in G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre. Euro. Phys. Jour. B 26, 167 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Read and S. Sachdev, Phys Rev. Lett. 62, 1694 (1989).

    Article  ADS  Google Scholar 

  20. N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).

    Article  ADS  Google Scholar 

  21. N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

    Article  ADS  Google Scholar 

  22. S. Sachdev and N. Read. Int. J. Mod. Phys. B 5. 219 (1991): available online at http://onsager.physics.vale.edu/p34.pdf.

    Article  ADS  Google Scholar 

  23. X. G. Wen, Phys. Rev. B 44, 2664 (1991).

    Article  ADS  Google Scholar 

  24. C.-H. Chung, K. Voelker, and Y.-B Kim, Phys. Rev. B 68, 094412 (2003).

    Article  ADS  Google Scholar 

  25. M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801 (1989).

    Article  ADS  Google Scholar 

  26. J. Callaway. Quantum Theory of the Solid State, Academic Press, New York (1974).

    Google Scholar 

  27. K. P. Schmidt and G. S. Uhrig. Phys. Rev. Lett. 90, 227204 (2003).

    Article  ADS  Google Scholar 

  28. M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).

    Article  ADS  Google Scholar 

  29. T. Sommer, M. Vojta, and K. W. Becker, Eur. Phys. J. B 23, 329 (2001)

    Article  ADS  Google Scholar 

  30. D. Carpentier and L. Balents, Phys. Rev. B 65, 024427 (2002).

    Article  ADS  Google Scholar 

  31. M. Itakura, J. Phys. Soc. Jpn. 72 74 (2003).

    Article  ADS  Google Scholar 

  32. B. Normand and T. M. Rice Phys. Rev. B 54, 7180 (1996); Phys. Rev. B 56, 8760 (1997).

    Article  ADS  Google Scholar 

  33. S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).

    Article  ADS  Google Scholar 

  34. K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993).

    Article  ADS  Google Scholar 

  35. S.-k Ma, Modern Theory of Critical Phenomena, W. A. Benjamin, Reading, Mass, (1976).

    Google Scholar 

  36. S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

    Article  ADS  Google Scholar 

  37. A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

    Article  ADS  Google Scholar 

  38. K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

    Article  ADS  Google Scholar 

  39. E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001). Y. Zhang, E. Demler, and S. Sachdev, Phys. Rev. B 66, 094501 (2002).

    Article  ADS  Google Scholar 

  40. I. Affleck, Phys. Rev. B 41, 6697 (1990).

    Article  ADS  Google Scholar 

  41. S. Sachdev, T. Senthil, and R. Shankar, Phys. Rev. B 50, 258 (1994).

    Article  ADS  Google Scholar 

  42. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).

    Article  ADS  Google Scholar 

  43. Y. Shindo and H. Tanaka. cond-mat/0310691.

    Google Scholar 

  44. M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78, 1984 (1997).

    Article  ADS  Google Scholar 

  45. H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999); K. Onizuka, H. Kageyama, Y. Narumi, K. Kindo, Y. Ueda, and T. Goto. J. Phys. Soc. Jpn. 69, 1016 (2000); S. Miyahara, F. Becca, and F. Mila. Phys. Rev. B 68, 024401 (2003).

    Article  ADS  Google Scholar 

  46. W. Shiramura, K. Takatsu, B. Kurniawan, H. Tanaka, H. Uekusa, Y. Ohashi, K. Takizawa, H. Mitamura, and T. Goto, J. Phys. Soc. Jpn. 67, 1548 (1998).

    Article  ADS  Google Scholar 

  47. P. Fazekas, and P. W. Anderson, Philos. Mag. 30, 23 (1974).

    Article  Google Scholar 

  48. S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35, 8865 (1987).

    Article  ADS  Google Scholar 

  49. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999).

    MATH  Google Scholar 

  50. B. Berg, and M. Lüscher, Nucl. Phys. B 190, 412 (1981).

    Article  ADS  Google Scholar 

  51. S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990); available online at http://onsager.physics.yale.edu/p.32.pdf.

    Article  ADS  Google Scholar 

  52. S. Sachdev and K. Park, Annals of Physics, N. Y. 298, 58 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  53. A. D'Adda, P. Di Vecchia, and M. Lüscher, Nucl. Phys. B 146, 63 (1978).

    Article  ADS  Google Scholar 

  54. E. Witten, Nucl. Phys. B 149, 285 (1979).

    Article  ADS  Google Scholar 

  55. S. Sachdev, Proceedings of the International Conference on Theoretical Physics, Paris, Annales Henri Poincare 4, 559 (2003).

    Google Scholar 

  56. J. Villain, J. Phys. (Paris) 36, 581 (1975).

    Article  Google Scholar 

  57. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).

    Article  ADS  Google Scholar 

  58. E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).

    Article  ADS  Google Scholar 

  59. S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1976); D. S. Fisher and J. D. Weeks, Phys. Rev. Lett. 50, 1077 (1983); E. Fradkin Phys. Rev. B 28, 5338 (1983).

    Article  ADS  Google Scholar 

  60. A. M. Polyakov, Gauge Fields and Strings, Harwood Academic, New York (1987).

    Google Scholar 

  61. I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).

    Article  ADS  Google Scholar 

  62. W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989).

    Article  ADS  Google Scholar 

  63. D. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

    Article  ADS  Google Scholar 

  64. J.-S. Bernier, C.-H. Chung, Y. B. Kim, and S. Sachdev, cond-mat/0310504.

    Google Scholar 

  65. K. Rommelse and M. den Nijs, Phys. Rev. Lett. 59, 2578 (1987).

    Article  ADS  Google Scholar 

  66. J.-B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20, 241 (2001).

    Article  ADS  Google Scholar 

  67. W. Brenig and A. Honecker, Phys. Rev. B 64, 140407 (2002).

    Article  Google Scholar 

  68. J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, Phys. Rev. B 67, 054411 (2003).

    Article  ADS  Google Scholar 

  69. C.-H. Chung, J. B. Marston, and S. Sachdev, Phys. Rev. B 64, 134407 (2001).

    Article  ADS  Google Scholar 

  70. A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett., 89, 247201 (2002).

    Article  ADS  Google Scholar 

  71. C. Lannert, M. P. A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001).

    Article  ADS  Google Scholar 

  72. K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).

    Article  ADS  Google Scholar 

  73. K. Harada, N. Kawashima, and M. Troyer, Phys. Rev. Lett. 90, 117203 (2003).

    Article  ADS  Google Scholar 

  74. V. N. Kotov, J. Oitmaa, O. P. Sushkov, and Z. Weihong, Phys. Rev. B 60, 14613 (1999): R. R. P. Singh, Z. Weihong, C. J. Hamer, and J. Oitmaa, Phys. Rev. B 60, 7278 (1999): V. N. Kotov and O. P. Sushkov. Phys. Rev. B 61. 11820 (2000): O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 66, 054401 (2002).

    Article  ADS  Google Scholar 

  75. M. S. L. du Croo de Jongh, J. M. J. van Leeuwen, and W. van Saarloos, Phys. Rev. B 62, 14844 (2000).

    Article  ADS  Google Scholar 

  76. E. Dagotto and A. Morco, Phys. Rev. Lett. 63, 2148 (1989); R. R. P. Singh and R. Narayanan. Phys. Rev. Lett. 65, 1072 (1990): H. J. Schulz and T. A. L. Zlman. Europhys. Lett. 18, 355 (1992): H. J. Schulz, T. A. L. Ziman, and D. Poilblane, J. Phys. 1 (France) 6, 675 (1996).

    Article  ADS  Google Scholar 

  77. L. Capriotti, F. Becca, A. Parola, and S. Sorella. Phys. Rev. Lett. 87, 097201 (2001).

    Article  ADS  Google Scholar 

  78. O. P. Sushkov, Phys. Rev. B 63, 174429 (2001).

    Article  ADS  Google Scholar 

  79. R. Eder and Y. Ohta. cond-mat/0304554 and cond-mat/0308184.

    Google Scholar 

  80. T. Senthil. A. Vishwanath, L. Balents. S. Sachdev, and M. P. A. Fisher, to appear in Science, cond-mat/0311326.

    Google Scholar 

  81. T. Senthil. L. Balents. S. Sachdev. A. Vishwanath, M. P. A. Fisher. cond-mat/0312617.

    Google Scholar 

  82. O. Motrunich and A. Vishwanath. cond-mat/0311222.

    Google Scholar 

  83. M. Vojta and S. Sachdev. Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Y. Zhang. and S. Sachdev, Phys. Rev. B 62, 6721 (2000).

    Article  ADS  Google Scholar 

  84. C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).

    Article  ADS  Google Scholar 

  85. See e. g. D. J. Amit: Field theory, the renormalization group, and critical phenomena. World Scientific, Singapore (1984).

    Google Scholar 

  86. H. Kleinert, F. S. Nogneira, and A. Sudbo, Phys. Rev. Lett. 88, 232001 (2002): Nucl. Phys. B 666. 316 (2003).

    Article  ADS  Google Scholar 

  87. N. Nagaosa and P. A. Lee, Phys. Rev. B 61, 9166 (2000).

    Article  ADS  Google Scholar 

  88. For completeness, we mention that the mapping to the dual XY model in a field has been questioned in I. Ichinose. T. Matsui, and M. Onoda, Phys. Rev. B 64, 104516 (2001), and [86]. The duality mappings in [80, 81] do not support these claims.

    Article  ADS  Google Scholar 

  89. F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  90. J. M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B 61, 15136 (2000).

    Article  ADS  Google Scholar 

  91. N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Rev. Lett. 86, 4757 (2001): C. T. Hill. S. Pokorski, and J. Wang. Phys. Rev. D 64 105005 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  92. G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  93. R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).

    Article  ADS  Google Scholar 

  94. A. Angelucci, Phys. Rev. B 45, 5387 (1992).

    Article  ADS  Google Scholar 

  95. A. V. Chubukov, T. Senthil and S. Sachdev. Phys. Rev. Lett. 72, 2089 (1994).

    Article  ADS  Google Scholar 

  96. S. Sachdev, Phys. Rev. B 45, 12377 (1992).

    Article  ADS  Google Scholar 

  97. T. Senthil and M. P. A. Fisher. Phys. Rev. B 62, 7850 (2000).

    Article  ADS  Google Scholar 

  98. P. Azaria, B. Delamott, and T. Jolicoeur. Phys. Rev. Lett. 64, 3175 (1990): P. Azaria, B. Delamott and D. Mouhanna. Phys. Rev. Lett. 68, 1762 (1992).

    Article  ADS  Google Scholar 

  99. N. Read and B. Chakraborty. Phys. Rev. B 40, 7133 (1989).

    Article  ADS  Google Scholar 

  100. R. Jalabert and S. Sachdev. Phys. Rev. B 44, 686 (1991).

    Article  ADS  Google Scholar 

  101. S. Sachdev and M. Vojta. J. Phys. Soc. Jpn. 69, Suppl. B, 1 (2000).

    Google Scholar 

  102. A. Vishwanath, L. Balents, and T. Senthil, cond-mat/0311085.

    Google Scholar 

  103. E. Fradkin, D. A. Huse, R. Moessner. V. Oganesyan, and S. L. Sondhi, cond-mat/0311353; E. Ardonne, P. Fendley, and E. Fradkin, cond-mat/0311466.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Schollwöck Johannes Richter Damian J. J. Farnell Raymod F. Bishop

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Sachdev, S. (2004). Quantum phases and phase transitions of Mott insulators. In: Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F. (eds) Quantum Magnetism. Lecture Notes in Physics, vol 645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119599

Download citation

  • DOI: https://doi.org/10.1007/BFb0119599

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21422-9

  • Online ISBN: 978-3-540-40066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics