Skip to main content

Simulations of pure and doped low-dimensional spin-1/2 gapped systems

  • Chapter
  • First Online:
Quantum Magnetism

Part of the book series: Lecture Notes in Physics ((LNP,volume 645))

Abstract

Low dimensional spin-1/2 systems with antiferromagnetic interactions display very innovative features, driven by strong quantum fluctuations. In particular, geometrical effects or competing magnetic interactions can give rise to the formation of a spin gap between the singlet ground state and the first excited triplet state. In this chapter, we focus on the numerical investigation of such systems by Exact Diagonalisation methods and some extensions of it including a simultaneous mean-field treatment of some perturbative couplings. After a presentation of the Lanczos algorithm and a description of the space group symmetries, we give a short review on some pure low-dimensional frustrated spin gapped systems. In particular, we outline the role of the magnetic frustration in the formation of disordered phase. A large part is also devoted to frustrated Spin-Peierls systems for which the role of interchain couplings as well as impurity doping effects has been studied numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general introduction on correlated electrons see e.g. P. Fulde. “Electron correlations in molecules and solids”, Springer Series in Solid State Sciences. Vol. 114, 2nd ed., Springer-Verlag (1993).

    Google Scholar 

  2. J. C. Bonner and M. E. Fisher, Phys. Rev. 135, 640 (1964).

    Article  ADS  Google Scholar 

  3. J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).

    Article  ADS  Google Scholar 

  4. So far calculations have been restricted to interacting electrons on ID disordered mesoscople rings. See e.g. M. Abraham and R. Berkovits, Phys. Rev. Lett. 70, 1509 (1993): G. Bouzerar. D. Poilblanc and G. Montambaux. Phys. Rev. B 49, 8258 (1994).

    Article  ADS  Google Scholar 

  5. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).

    Article  MathSciNet  Google Scholar 

  6. For a simple introduction on the implementation of the Lanczos algorithm for correlated electrons models see e.g. S. Haas. Ph. D. dissertation. Florida State University, unpublished (1995).

    Google Scholar 

  7. A modified Lanczos method has also been introduced by E. Dagotto and A. Moreo, Phys. Rev. D 31, 865 (1985) and E. Gagliano, E. Dagotto. A. Moreo and F. Alcaraz. Phys. Rev. B 34, 1677 (1986) (Erratum: ibid. 35 8562 (1987)). Its convergence is usually slower. However, it gives a systematic way to improve a variational wave function. See e.g. E. S. Heeb and T. M. Rice, Z. Phys. B 90. 73 (1993).

    Article  ADS  Google Scholar 

  8. G. Montambaux, D. Poilblanc, J. Bellissard and C. Sire, Phys. Rev. Lett. 70, 497 (1993): D. Poilblanc, T. Ziman, J. Bellissard, F. Mila and G. Montambaux. Europhys. Lett., 22 (7), 537 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Gagliano, S. Bacci, and E. Dagotto, Phys. Rev. B 44, 285 (1991); J. Jaklic and P. Prelovsek. Phys. Rev. B 49, 5065 (1994): ibid. Phys. Rev. B 50, 7129 (1994): ibid. Phys. Rev. Lett. 74 3411 (1995).

    Article  ADS  Google Scholar 

  10. All operations of the point group will be defined with respect to an (arbitrary) lattice site.

    Google Scholar 

  11. H. J. Schulz, T. Ziman and D. Poilblanc, in “Magnetic systems with competing interactions”, p120–160. Ed. H.T. Diep. World Scientific. Singapore (1994).

    Chapter  Google Scholar 

  12. H. J. Schulz, T. A. Ziman and D. Poilblanc, J. Phys. I France 6 (1996) 675–703.

    Article  Google Scholar 

  13. For standard hashing algorithms see e.g. “Numerical Recipes in Fortran: The Art of Scientific Computing”, 2nd ed., p. 320. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery (Cambridge University Press, 1992).

    Google Scholar 

  14. P. Chandra and B. Douçot, Phys. Rev. B 38, 9335 (1988); M. Takahashi. Phys. Rev. B 40, 2494 (1989).

    Article  ADS  Google Scholar 

  15. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

    Article  ADS  Google Scholar 

  16. M. P. Gelfand, R. R. P. Singh and D. A. Huse, Phys. Rev. B 40, 10801 (1989).

    Article  ADS  Google Scholar 

  17. F. Mila, D. Poilblanc and C. Bruder, Phys. Rev. B 43, 7891 (1991).

    Article  ADS  Google Scholar 

  18. E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989): Phys. Rev. B 39, 4744 (1989).

    Article  ADS  Google Scholar 

  19. F. Figueirido, A. Karlhede, S. Kivelson, S. Sondhi, M. Rocek and D. S. Rokhsar, Phys. Rev. B 41, 4619 (1989).

    Article  ADS  Google Scholar 

  20. D. Poilblanc, E. Gagliano, S. Bacci, E. Dagotto, Phys. Rev. B 43, 10970 (1991): See also D. Poilblanc and E. Dagotto, Phys. Rev. B 45, 101111 (1992).

    Article  ADS  Google Scholar 

  21. H. J. Schulz and T. A. Ziman, Europhys. Lett. 18, 355 (1992).

    Article  ADS  Google Scholar 

  22. B. Bernu, C. Lhuillier, L. Pierre, Phys. Rev. Lett. 69, 2590 (1992); B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev. B 50, 10048 (1994).

    Article  ADS  Google Scholar 

  23. B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Physica Scripta 49, 192 (1993); Ch. Waldtmann et al., Eur. Phys. J. B 2, 501 (1998).

    Article  Google Scholar 

  24. M. Albrecht, F. Mila and D. Poilblanc, Phys. Rev. B 54 15856 (1996).

    Article  ADS  Google Scholar 

  25. P. Sindzingre, J.-B. Fouet and C. Lhuillier, Phys. Rev. B 66, 174424 (2002); J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, Phys. Rev. B 67, 054411 (2003).

    Article  ADS  Google Scholar 

  26. H. Neuberger and T. A. Ziman, Phys. Rev. B 39, 2608 (1989).

    Article  ADS  Google Scholar 

  27. V. Emery and C. Noguera, Phys. Rev. Lett. 60, 631 (1988).

    Article  ADS  Google Scholar 

  28. D. Augier: “Couplage electron-phonon dans les systémes fortement corrélés de basse dimensionnalité: application aux composés spin-Peierls”, Thesis, Université Paul Sabatier, Toulouse (1999).

    Google Scholar 

  29. S. Eggert, Phys. Rev. B 54, R9612 (1996).

    Article  ADS  Google Scholar 

  30. C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1399 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Augier, D. Poilblanc, E. Sørensen and I. Affleck, Phys. Rev. B 58, 9110 (1998).

    Article  ADS  Google Scholar 

  32. I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A 22, 511 (1989). For a recent DMRG investigation, see also T. Papenbrock et al., Phys. Rev. B 68, 024416 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  33. B. S. Shastry and B. Sutherland, Phys. rev. Lett. 47, 964 (1981); R. Chitra et al., Phys. Rev. B 52, 6591 (1995).

    Article  ADS  Google Scholar 

  34. M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

    Article  ADS  Google Scholar 

  35. M. Isobe and Y. Ueda, J. Phys. Soc. Jpn. 65, 3142 (1996); R. Valenti et al., Phys. Rev. Lett. 86, 5381 (2001).

    Article  ADS  Google Scholar 

  36. E. S. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Phys. Rev. B 58, R14701 (1998).

    Article  ADS  Google Scholar 

  37. H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996); see also A. W. Sandwik, Phys. Rev. Lett. 83, 3069 (1999).

    Article  ADS  Google Scholar 

  38. H. Fukuyama, T. Tanimoto and M. Saito, J. Phys. Soc. Jpn. 65, 1183 (1996).

    ADS  Google Scholar 

  39. M. Hase et al., Phys. Rev. Lett. 71, 4059 (1993); S.B. Oseroff et al., Phys. Rev. Lett. 74, 1450 (1995); L.-P. Regnault et al., Europhys. Lett. 32 579 (1995); T. Masuda et al., Phys. Rev. Lett. 80, 4566 (1998); B. Grenier et al., Phys. Rev. B 58, 8202 (1998).

    Article  ADS  Google Scholar 

  40. T. Nakamura, Phys. Rev. B 59, R6589 (1999).

    Article  ADS  Google Scholar 

  41. G. B. Martins, E. Dagotto, and J. Riera, Phys. Rev. B 54, 16032 (1996).

    Article  ADS  Google Scholar 

  42. B. Normand and F. Mila, Phys. Rev. B. 65, 104411 (2002).

    Article  ADS  Google Scholar 

  43. P. Hansen, D. Augier, J. Riera, and D. Poilblanc, Phys. Rev. B. 59, 13557 (1999).

    Article  ADS  Google Scholar 

  44. A. Dobry et al., Phys. Rev. B. 60, 4065 (1999).

    Article  ADS  Google Scholar 

  45. G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys. Rev. Lett. 81, 1098 (1998); A. A. Katanin and A. P. Kampf, Phys. Rev. B 66, 100403(R) (2002); A. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002).

    Article  ADS  Google Scholar 

  46. Two-leg ladders with cyclic exchange show a very rich phase diagram. See e.g. S. Brehmer et al., Phys. Rev. B. 60, 329 (1999): M. Muller, T. Vekua and H.-J. Mikeska, Phys. Rev. B 66, 134423 (2002): A. Läuchli, G. Schmid and M. Troyer, Phys. Rev. B 67, 100409(R) (2003).

    Article  ADS  Google Scholar 

  47. N. Laflorencie and D. Poilblanc, Phys. Rev. Lett. 90 157202 (2003).

    Article  ADS  Google Scholar 

  48. An additional small confinement χ J 21 /J 1 was found in second order perturbation in J by T. M. R. Byrnes et al., Phys. Rev. B 60, 4057 (1999).

    Article  ADS  Google Scholar 

  49. In that case, the solution is unique and the sign of the bulk dimerisation is fixed by the local condition of maximum overlap between the 2 solitonic clouds.

    Google Scholar 

  50. Two equivalent symmetric solutions are obtained with opposite signs of the bulk dimerisation

    Google Scholar 

  51. A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (19991); A. W. Sandvik. J. Phys. A 25, 3667 (1992): A. W. Sandvik. Phys. Rev. B 56, 11678 (1997).

    Article  ADS  Google Scholar 

  52. N. Laflorencie, D. Poilblane and A. W. Sandvik, cond-mat/0308334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Schollwöck Johannes Richter Damian J. J. Farnell Raymod F. Bishop

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Laflorencie, N., Poilblanc, D. (2004). Simulations of pure and doped low-dimensional spin-1/2 gapped systems. In: Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F. (eds) Quantum Magnetism. Lecture Notes in Physics, vol 645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119595

Download citation

  • DOI: https://doi.org/10.1007/BFb0119595

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21422-9

  • Online ISBN: 978-3-540-40066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics