Simulations of pure and doped low-dimensional spin-1/2 gapped systems

  • Nicolas Laflorencie
  • Didier Poilblanc
Part of the Lecture Notes in Physics book series (LNP, volume 645)


Low dimensional spin-1/2 systems with antiferromagnetic interactions display very innovative features, driven by strong quantum fluctuations. In particular, geometrical effects or competing magnetic interactions can give rise to the formation of a spin gap between the singlet ground state and the first excited triplet state. In this chapter, we focus on the numerical investigation of such systems by Exact Diagonalisation methods and some extensions of it including a simultaneous mean-field treatment of some perturbative couplings. After a presentation of the Lanczos algorithm and a description of the space group symmetries, we give a short review on some pure low-dimensional frustrated spin gapped systems. In particular, we outline the role of the magnetic frustration in the formation of disordered phase. A large part is also devoted to frustrated Spin-Peierls systems for which the role of interchain couplings as well as impurity doping effects has been studied numerically.


Near Neighbor Heisenberg Model Gapped System Space Group Symmetry Lanczos Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a general introduction on correlated electrons see e.g. P. Fulde. “Electron correlations in molecules and solids”, Springer Series in Solid State Sciences. Vol. 114, 2nd ed., Springer-Verlag (1993).Google Scholar
  2. 2.
    J. C. Bonner and M. E. Fisher, Phys. Rev. 135, 640 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    So far calculations have been restricted to interacting electrons on ID disordered mesoscople rings. See e.g. M. Abraham and R. Berkovits, Phys. Rev. Lett. 70, 1509 (1993): G. Bouzerar. D. Poilblanc and G. Montambaux. Phys. Rev. B 49, 8258 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).MathSciNetCrossRefGoogle Scholar
  6. 6.
    For a simple introduction on the implementation of the Lanczos algorithm for correlated electrons models see e.g. S. Haas. Ph. D. dissertation. Florida State University, unpublished (1995).Google Scholar
  7. 7.
    A modified Lanczos method has also been introduced by E. Dagotto and A. Moreo, Phys. Rev. D 31, 865 (1985) and E. Gagliano, E. Dagotto. A. Moreo and F. Alcaraz. Phys. Rev. B 34, 1677 (1986) (Erratum: ibid. 35 8562 (1987)). Its convergence is usually slower. However, it gives a systematic way to improve a variational wave function. See e.g. E. S. Heeb and T. M. Rice, Z. Phys. B 90. 73 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    G. Montambaux, D. Poilblanc, J. Bellissard and C. Sire, Phys. Rev. Lett. 70, 497 (1993): D. Poilblanc, T. Ziman, J. Bellissard, F. Mila and G. Montambaux. Europhys. Lett., 22 (7), 537 (1993).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    E. Gagliano, S. Bacci, and E. Dagotto, Phys. Rev. B 44, 285 (1991); J. Jaklic and P. Prelovsek. Phys. Rev. B 49, 5065 (1994): ibid. Phys. Rev. B 50, 7129 (1994): ibid. Phys. Rev. Lett. 74 3411 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    All operations of the point group will be defined with respect to an (arbitrary) lattice site.Google Scholar
  11. 11.
    H. J. Schulz, T. Ziman and D. Poilblanc, in “Magnetic systems with competing interactions”, p120–160. Ed. H.T. Diep. World Scientific. Singapore (1994).CrossRefGoogle Scholar
  12. 12.
    H. J. Schulz, T. A. Ziman and D. Poilblanc, J. Phys. I France 6 (1996) 675–703.CrossRefGoogle Scholar
  13. 13.
    For standard hashing algorithms see e.g. “Numerical Recipes in Fortran: The Art of Scientific Computing”, 2nd ed., p. 320. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery (Cambridge University Press, 1992).Google Scholar
  14. 14.
    P. Chandra and B. Douçot, Phys. Rev. B 38, 9335 (1988); M. Takahashi. Phys. Rev. B 40, 2494 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    M. P. Gelfand, R. R. P. Singh and D. A. Huse, Phys. Rev. B 40, 10801 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    F. Mila, D. Poilblanc and C. Bruder, Phys. Rev. B 43, 7891 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989): Phys. Rev. B 39, 4744 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    F. Figueirido, A. Karlhede, S. Kivelson, S. Sondhi, M. Rocek and D. S. Rokhsar, Phys. Rev. B 41, 4619 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    D. Poilblanc, E. Gagliano, S. Bacci, E. Dagotto, Phys. Rev. B 43, 10970 (1991): See also D. Poilblanc and E. Dagotto, Phys. Rev. B 45, 101111 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    H. J. Schulz and T. A. Ziman, Europhys. Lett. 18, 355 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    B. Bernu, C. Lhuillier, L. Pierre, Phys. Rev. Lett. 69, 2590 (1992); B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev. B 50, 10048 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Physica Scripta 49, 192 (1993); Ch. Waldtmann et al., Eur. Phys. J. B 2, 501 (1998).CrossRefGoogle Scholar
  24. 24.
    M. Albrecht, F. Mila and D. Poilblanc, Phys. Rev. B 54 15856 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    P. Sindzingre, J.-B. Fouet and C. Lhuillier, Phys. Rev. B 66, 174424 (2002); J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, Phys. Rev. B 67, 054411 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    H. Neuberger and T. A. Ziman, Phys. Rev. B 39, 2608 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    V. Emery and C. Noguera, Phys. Rev. Lett. 60, 631 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    D. Augier: “Couplage electron-phonon dans les systémes fortement corrélés de basse dimensionnalité: application aux composés spin-Peierls”, Thesis, Université Paul Sabatier, Toulouse (1999).Google Scholar
  29. 29.
    S. Eggert, Phys. Rev. B 54, R9612 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1399 (1969).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Augier, D. Poilblanc, E. Sørensen and I. Affleck, Phys. Rev. B 58, 9110 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A 22, 511 (1989). For a recent DMRG investigation, see also T. Papenbrock et al., Phys. Rev. B 68, 024416 (2003).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    B. S. Shastry and B. Sutherland, Phys. rev. Lett. 47, 964 (1981); R. Chitra et al., Phys. Rev. B 52, 6591 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    M. Isobe and Y. Ueda, J. Phys. Soc. Jpn. 65, 3142 (1996); R. Valenti et al., Phys. Rev. Lett. 86, 5381 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    E. S. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Phys. Rev. B 58, R14701 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996); see also A. W. Sandwik, Phys. Rev. Lett. 83, 3069 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    H. Fukuyama, T. Tanimoto and M. Saito, J. Phys. Soc. Jpn. 65, 1183 (1996).ADSGoogle Scholar
  39. 39.
    M. Hase et al., Phys. Rev. Lett. 71, 4059 (1993); S.B. Oseroff et al., Phys. Rev. Lett. 74, 1450 (1995); L.-P. Regnault et al., Europhys. Lett. 32 579 (1995); T. Masuda et al., Phys. Rev. Lett. 80, 4566 (1998); B. Grenier et al., Phys. Rev. B 58, 8202 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    T. Nakamura, Phys. Rev. B 59, R6589 (1999).ADSCrossRefGoogle Scholar
  41. 41.
    G. B. Martins, E. Dagotto, and J. Riera, Phys. Rev. B 54, 16032 (1996).ADSCrossRefGoogle Scholar
  42. 42.
    B. Normand and F. Mila, Phys. Rev. B. 65, 104411 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    P. Hansen, D. Augier, J. Riera, and D. Poilblanc, Phys. Rev. B. 59, 13557 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    A. Dobry et al., Phys. Rev. B. 60, 4065 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys. Rev. Lett. 81, 1098 (1998); A. A. Katanin and A. P. Kampf, Phys. Rev. B 66, 100403(R) (2002); A. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002).ADSCrossRefGoogle Scholar
  46. 46.
    Two-leg ladders with cyclic exchange show a very rich phase diagram. See e.g. S. Brehmer et al., Phys. Rev. B. 60, 329 (1999): M. Muller, T. Vekua and H.-J. Mikeska, Phys. Rev. B 66, 134423 (2002): A. Läuchli, G. Schmid and M. Troyer, Phys. Rev. B 67, 100409(R) (2003).ADSCrossRefGoogle Scholar
  47. 47.
    N. Laflorencie and D. Poilblanc, Phys. Rev. Lett. 90 157202 (2003).ADSCrossRefGoogle Scholar
  48. 48.
    An additional small confinement χ J 12/J 1 was found in second order perturbation in J by T. M. R. Byrnes et al., Phys. Rev. B 60, 4057 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    In that case, the solution is unique and the sign of the bulk dimerisation is fixed by the local condition of maximum overlap between the 2 solitonic clouds.Google Scholar
  50. 50.
    Two equivalent symmetric solutions are obtained with opposite signs of the bulk dimerisationGoogle Scholar
  51. 51.
    A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (19991); A. W. Sandvik. J. Phys. A 25, 3667 (1992): A. W. Sandvik. Phys. Rev. B 56, 11678 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    N. Laflorencie, D. Poilblane and A. W. Sandvik, cond-mat/0308334.Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Nicolas Laflorencie
    • 1
  • Didier Poilblanc
    • 1
  1. 1.Laboratoire de Physique ThéoriqueCNRS-UMR5152 Université Paul SabatierToulouseFrance

Personalised recommendations