Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 141))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Bonhivers M, Borgnia MJ (1998) The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273:14659–14662

    PubMed  CAS  Google Scholar 

  • Appelboom JWTh, Brodsky WA, Tuttle WS, Diamond I (1958) The freezing point depression of mammalian tissues after sudden heating in boiling distilled water. J Gen Physiol 41:1153–1169

    PubMed  CAS  Google Scholar 

  • Aull F (1981) Potassium chloride cotransport in steady-state ascites tumor cells. Biochim Biophys Acta 643:339–345

    PubMed  CAS  Google Scholar 

  • Barry PH, Diamond JM (1984) Effects of unstirred layers on membrane phenomena. Physiol Rev 64:763–872

    PubMed  CAS  Google Scholar 

  • Baslow MH (1998) Function of the N-acetyl-L-histidine system in the vertebrate eye: Evidence in support of a role as a molecular water pump. J Mol Neurosci 10(3) 193–208

    PubMed  CAS  Google Scholar 

  • Baslow MH (1999) The existence of molecular water pumps in the nervous system: a review of the evidence. Neurochem Int 34:77–90

    PubMed  CAS  Google Scholar 

  • Baum M, Berry CA (1984) Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule. J Clin Invest 74:205–211

    PubMed  CAS  Google Scholar 

  • Bianchini L, Fossat B, Porthe-Nibelle J, Ellory JC, Lahlou B (1988) Effects of hypoosmotic shock on ion fluxes in isolated trout hepatocytes. J Exp Biol 137:303–318

    PubMed  CAS  Google Scholar 

  • Boulpaep EL, Maunsbach AB, Tripathi S, et al (1993) Mechanisms of isosmotic water transport in leaky epithelia: Consensus and inconsistencies. In: Ussing HH, Fischbarg J, Sten-Knudsen O, et al (eds) Isotonic Transport in Leaky Epithelia. Munksgaard, Copenhagen, pp 53–67

    Google Scholar 

  • Bulone D, Donato ID, Palma-Vittorelli MB, Palma MU (1991) Density, structural lifetime, and entropy of H-bond cages promoted by monohydric alcohols in normal and supercooled water. J Chem Phys 94:6816–6826

    CAS  Google Scholar 

  • Bundgaard M, Zeuthen T (1982) Structure of Necturus gallbladder epithelium during transport at low external osmolarities. J Chem Biol 68:97–105

    CAS  Google Scholar 

  • Chen X-Z, Coady MJ, Jackson F, Berteloot A, Lapointe J-Y (1995) Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Biophys J 69:2405–2414

    PubMed  CAS  Google Scholar 

  • Cherksey BD, Zeuthen T (1987) A membrane protein with a K+ and a Cl channel. Journal of Physiology 387:33P

    Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: The molecular basis of facilitated water movement through living plant cells? Plant Physiol 105:9–13

    PubMed  CAS  Google Scholar 

  • Colombo MF, Rau DC, Parsegian VA (1992) Protein Solvation in Allosteric Regulation: A Water Effect on Hemoglobin. Science 256:655–659

    PubMed  CAS  Google Scholar 

  • Conway EJ, Geoghegan H (1955) Molecular concentration of kidney cortex slices. J Physiol 130:438–445

    PubMed  CAS  Google Scholar 

  • Conway EJ, Geoghegan H, McCormack JI (1955) Autolytic changes at zero centigrade in ground mammalian tissues. J Physiol 130:427–437

    PubMed  CAS  Google Scholar 

  • Cotton CU, Reuss L (1989) Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium. J Gen Physiol. 93:631–647

    PubMed  CAS  Google Scholar 

  • Cotton CU, Reuss L (1991) Effects of changes in mucosal solution Cl or K+ concentration on cell water volume of Necturus gallbladder epithelium. J Gen Physiol. 97:667–686

    PubMed  CAS  Google Scholar 

  • Cotton CU, Weinstein AM, Reuss L (1989) Osmotic water permeability of necturus gallbladder epithelium. J Gen Physiol 93:649–679

    PubMed  CAS  Google Scholar 

  • Curran PF, Macintosh JR (1962) A model system for biological water transport. Nature 193:347–348

    PubMed  CAS  Google Scholar 

  • Dainty J, House CR (1966) Unstirred layers in frog skin. J Physiol 182:66–78

    PubMed  CAS  Google Scholar 

  • Diamond JM (1979) Osmotic water flow in leaky epithelia. J Membr Biol 51:195–216

    PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kou A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Eskandari S, Wright EM, Kreman M, Starace DM, Zampighi GA (1998) Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci USA 95:11235–11240

    PubMed  CAS  Google Scholar 

  • Eveloff J, Warnock DG (1987) K−Cl transport systems in rabbit renal basolateral membrane vesicles. Am J Physiol 252:F883–F889

    PubMed  CAS  Google Scholar 

  • Fischbarg J, Kuang K, Vera JC, Arant S, Silverstein SC, Loike J, Rosen OM (1990) Glucose Transporters Serve as Water Channels. Proc Natl Acad Sci USA 87:3244–3247

    PubMed  CAS  Google Scholar 

  • Frambach DA, Weiter JJ, Adler AJ (1985) A photogrammetric method to measure fluid movement across isolated frog retinal pigment epithelium. Biophys J 47:547–552

    PubMed  CAS  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The Theory of Rate Processes. McGraw-Hill Book Company, Inc, New York and London

    Google Scholar 

  • Green R, Giebisch G, Unwin R, Weinstein AM, (1991) Coupled water transport by rat proximal tubule. Am J Physiol 261:F1046–F1054

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflüg Arch 396:325–334

    CAS  Google Scholar 

  • Guggino WB (1986) Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl and K+ transport across the basolateral cell membrane. Am J Physiol 250:F430–F440

    PubMed  CAS  Google Scholar 

  • Halm DR, Krasny EJ, Frizzell RA (1985) Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol 85:843–864

    PubMed  CAS  Google Scholar 

  • Hamann S, La Cour M, Lui GM, Zeuthen T (1996) Transport of protons lactate and water in cultured fetal human RPE. Invest Ophthalmol Vis Sci 37:1109

    Google Scholar 

  • Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S (1998) Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 274:C1332–C1345

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Skack W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science 258:1477–1479

    PubMed  CAS  Google Scholar 

  • Heath H, Kang SS, Philoppou D (1975) Glucose, glucose-6-phosphate, lactate and pyruvate content of the retina, blood and liver of streptozotocin-diabetic rats fed sucrose-or starch-rich diets. Diabetologica 11:57–62

    CAS  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    PubMed  CAS  Google Scholar 

  • Heisey SR, Held D, Pappenheimer JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781

    PubMed  CAS  Google Scholar 

  • Hill A (1980) Salt-water coupling in leaky epithelia. J Member Biol 56:177–182

    CAS  Google Scholar 

  • Hill BS, Hill AE (1978) Fluid transfer by necturus gall bladder epithelium as a function of osmolarity. Proc R Soc Lond 200:151–162

    CAS  Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland, Massachusetts

    Google Scholar 

  • House CR (1974) Water transport in cells and tissues. Edward Arnold, London

    Google Scholar 

  • Hughes BA, Miller SS, Machen TE (1984) Effect of cyclic aMP on fluid absorption across the frog retinal pigment epithelium. Measurements in the open circuit state. J Gen Physiol 83:875–899

    PubMed  CAS  Google Scholar 

  • Ikonomov O, Simon MX, Frömter E (1985) Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pflüg Arch 403:301–307

    CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem. 272:20782–20786

    PubMed  CAS  Google Scholar 

  • Kornblatt JA (1998) The water channel of cytochrome c oxidase: inferences from inhibitor studies. Biophysical Journal 75:3127–3134

    PubMed  CAS  Google Scholar 

  • Kornblatt JA, Hoa GHB (1990) A nontraditional role for water in the cytochrome c oxidase reaction. Biochem 29:9370–9376

    Google Scholar 

  • Kornblatt JA, Kornblatt MJ, Rajotte I, Hoa GHB, Kahn PC (1998) Thermodynamic volume cycles for electron transfer in the cytochrome c oxidase and for the binding of cytochrome c to cytochrome c oxidase. Biophys J 75:435–444

    PubMed  CAS  Google Scholar 

  • Kramhøft B, Lambert IH, Hofmann EK, Jørgensen F (1986) Activation of Cl dependent K transport in Ehrlich ascites tumor cells. Am J Physiol 251:C369–C379

    PubMed  Google Scholar 

  • Kregonow FM (1971) The response of duck erythrocytes to nonhemolytic hypotonic media. J Gen Physiol 58:372–395

    Google Scholar 

  • Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K (1997) Molecular cloning and expression of a novel human aquaporin from adipose tisue with glycerol permeability. Biochem Biophys Res Com 241:53–58

    PubMed  CAS  Google Scholar 

  • laCour M, Lin H, Kenyon E, Miller SS (1994) Lactate transport in freshly isolated human fetal retinal pigment epithelium. Invest Ophthalmol Vis Sci 35:434–440

    CAS  Google Scholar 

  • Larson M, Spring KR (1984) Volume regulation by necturus gallbladder: basolateral KCl exit. J Membr Biol 81:219–232

    PubMed  CAS  Google Scholar 

  • Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    PubMed  CAS  Google Scholar 

  • Lauf PK, Bauer J, Adragna NC, Fujise H, Martin A, Zade-Oppen M, Ryu KH, Delpire E (1992) Erythrocyte K−Cl cotransport: properties and regulation. Am J Physiol 263:C917–C932

    PubMed  CAS  Google Scholar 

  • Loike JD, Hickman S, Kuang K, Xu M, Cao L, Vera JC, Silverstein SC, Fischbarg J (1996) Sodium-glucose cotransporters display sodium-and phlorizin-dependent water permeability. Am J Physiol 271:C1774–C1779

    PubMed  CAS  Google Scholar 

  • Loo DDF, Wright EM, Meinild A-K, Klaerke DA, Zeuthen T (1999a) commentary on “Epithelial Fluid Transport—A century of investigation”. News Physiol Sci 14:98–100

    PubMed  Google Scholar 

  • Loo DDF, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93

    Google Scholar 

  • Loo DF, Hirayama BA, Meinild A-K, Chandy G, Zeuthen T, Wright E (1999b) Passive water and ion transport by cotransporters. J Physiol, in press

    Google Scholar 

  • Lubin M (1963) Cell potassium and the regulation of protein synthesis. In: Hoffman JF (ed) The Cellular Functions of Membrane Transport. Prentice-Hall Inc., Englewood Cliffs, New Jersey, pp 193–211

    Google Scholar 

  • Ludwig C (1861) Lehrbuch der Physiologie des Menschen. C.F. Wintersche Verlagshandlung, Leipzig und Heidelberg

    Google Scholar 

  • Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849

    PubMed  CAS  Google Scholar 

  • Mackenzie B, Loo DDF, Wright EM (1998) Relationship between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol 162:101–106

    PubMed  CAS  Google Scholar 

  • Maffly RH, Leaf A (1959) The potential of water in mammalian tissues. J Gen Physiol 42:1257–1275

    PubMed  CAS  Google Scholar 

  • Marmor MF (1989) Mechanisms of normal retinal adhesion. In: Ryan SJ, Schachat AP, Murphy RB, et al (eds) Retina. Mosby, St. Louis, USA, pp 71–87

    Google Scholar 

  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ, Saier Jr MH (1994) Functional Characterization of the Escherichia coli Glycerol Facilitator, GlpF, in Xenopus Oocytes. J Biol Chem 269:11869–11872

    PubMed  CAS  Google Scholar 

  • Meinild A-K, Klaerke DA, Loo DDF, Wright EM, Zeuthen T (1998a) The human Na+/Glucose cotransporter is a molecular water pump. J Physiol 508.1:15–21

    PubMed  CAS  Google Scholar 

  • Meinild A-K, Klaerke DA, Zeuthen T (1998b) Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0 to 5. J Biol Chem 273:32446–32451

    PubMed  CAS  Google Scholar 

  • Meinild A-K, Loo DFF, Pajor A, Zeuthen T, Wright EM (2000) Water transport by the renal Na+/Dicarboxylate Cotransporter. Am J Physiol (in press)

    Google Scholar 

  • Mitchell P (1957) A general theory of membrane transport from studies of bacteria. Nature 180:134–136

    PubMed  CAS  Google Scholar 

  • Mitchell P (1990) Osmochemistry of solute translocation. Res Microbiol 141:286–289

    PubMed  CAS  Google Scholar 

  • Nikaido H, Saier MH, Jr. (1992) Transport proteins in bacteria: Common themes in their design. Science 258:936–942

    PubMed  CAS  Google Scholar 

  • Parent L, Supplison S, Loo DDF, Wright EM (1992) Electrogenic properties of the cloned Na+/Glucose Cotransporter. J Member Biol 125:49–62

    CAS  Google Scholar 

  • Parsegian A, Rau D, Zimmerberg J (1993) Structural transitions induced by osmotic stress. In: Leopold AC (ed) Membranes, Metabolism, and Dry Organisms. Comstock Publishing Associates, London, pp 306–317

    Google Scholar 

  • Parsons DS, Wingate DL (1961) The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim Biophys Acta 46:170–183

    PubMed  CAS  Google Scholar 

  • Patlak CS, Goldstein DA, Hoffman JF (1963) The flow of solute and solvent across a two-membrane system. J Theor Biol 3:420–442

    Google Scholar 

  • Pedley TJ (1978) The development of osmotic flow through an unstirred layer. J Theor Biol 70:427–447

    PubMed  CAS  Google Scholar 

  • Pedley TJ (1983) Calculation of unstirred layer thickness in membrane transport experiments: a survey. Quart Rev Biophys 16:115–150

    CAS  Google Scholar 

  • Pedley TJ, Fischbarg J (1980) Unstirred layer effects in osmotic water flow across gallbladder epithelium. J Membr Biol. 54:89–102

    PubMed  CAS  Google Scholar 

  • Perry PB, O’Neill WC (1993) Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K−Cl cotransport and K channels. Am J Physiol 265:C763–C769

    PubMed  CAS  Google Scholar 

  • Persson B-E, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeability and volume regulation. J Gen Physiol 79:481–505

    PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in zenopus oocytes expressing red cell CHIP28 protein. Science 256:385–389

    PubMed  CAS  Google Scholar 

  • Qian M, Haser R, Payan F (1995) Carbohydrate Binding Sites in a Pancreatic α-Amylase-Substrate Complex, Derived from X-ray Structure Analysis at 2.1 Å Resolution. Prot Sci 4:747–755

    CAS  Google Scholar 

  • Rand RP, Fuller NL (1992) Water as an inhibiting ligand in yeast hexokinase. Biophys J 61:A345

    Google Scholar 

  • Reid EW (1892) Report on experiments upon “absorbtion without osmosis”. Brit med J 1:323–326

    Google Scholar 

  • Reid EW (1901) Transport of fluid by certain epithelia. J Physiol 26:436–444

    PubMed  CAS  Google Scholar 

  • Reuss L (1983) Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature 305:723–726

    PubMed  CAS  Google Scholar 

  • Reuss L (1985) Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci 82:6014–6018

    PubMed  CAS  Google Scholar 

  • Sasaki Sea (1988) KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules. J Clin Invest. 81:194–199

    Google Scholar 

  • Schnermann J, Chou C-L, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorbtion in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    PubMed  CAS  Google Scholar 

  • Schreiber R, Greger R, Nitschke R, Kunzelmann K (1997) Cystic fibrosis transmembrane conductance regulator activates water condutance in Xenopus oocytes. Pflüg Arch 434:841–847

    CAS  Google Scholar 

  • Shindo T, Spring KR (1981) Chloride movement across the basolateral membrane of proximal tubule cells. J Membr Biol. 58:35–42

    PubMed  CAS  Google Scholar 

  • Spring KR (1998) Routes and mechanism of fluid transport by epithelia. Ann Rev Physiol 60:105–119

    CAS  Google Scholar 

  • Spring KR (1999) Epithelial Fluid Transport—A Century of Investigation. News Physiol Sci 14:94–97

    Google Scholar 

  • Steinbach HB (1962) The prevalence of K. Perspect Biol Med 5:338–355

    PubMed  CAS  Google Scholar 

  • Steitz TA, Shoham M, Bennett WS, Jr. (1981) Structural dynamics of yeast hexokinase during catalysis. Phil Trans R Soc Lond 293:43–52

    CAS  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berfer UV, Mackenzie B, Devidas S, Guggino WB, Van-Hoek AN, Hediger MA (1998) Molecular Characterization of a Broad Selectivity Neutral Solute Channel. J Biol Biochem 273:24737–24743

    CAS  Google Scholar 

  • Turk E, Kerner CJ, Lostao MP, Wright EM (1996) Membrane Topology of the Human Na+/Glucose Cotransporter SGLT1. J Biol Chem 271:1925–1934

    PubMed  CAS  Google Scholar 

  • White TW, Bruzzone R, Goocenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720

    PubMed  CAS  Google Scholar 

  • Whittembury G, Hill BS (1982) Fluid reabsorption by Necturus proximal tubule perfused with solutions of normal and reduced osmolarity. Proc Roy Soc 215:411–431

    CAS  Google Scholar 

  • Wright EM, Loo DDF, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, Boorer K, Zampighi G (1994) ‘Active’ sugar transprot in eurkaryotes. J Exp Biol 196:197–212

    PubMed  CAS  Google Scholar 

  • Wright EM, Loo DDF, Turk E, Hirayama BA (1996) Sodium cotransporters. Curr Opin Cell Biol 8:468–473

    PubMed  CAS  Google Scholar 

  • Wright EM, Loo DDF, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Tyrk E, Eskandari S, Lam JT (1998) Structure and function of the Na+/glucose cotransporter. Acta Physiol Scand Suppl 643:257–264

    PubMed  CAS  Google Scholar 

  • Wright EM, Wiedner G, Rumrich G (1977) Fluid secretion by the frog choroid plexus. Exp Eye Res Suppl 25:149–155

    CAS  Google Scholar 

  • Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporin 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–14146

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Kreman M, Boorer KJ, Loo DDF, Bezanilla F, Chandy G, Hall JE, Wright EM (1995) A Method for Determining the Unitary Functional Capacity of Cloned Channels and Transporters Expressed in Xenopus laevis oocytes. J Membr Biol 148:65–78

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Kunig N, Loo DDF (1997) Structure and function of cell-to-cell channels purified from the lens and of hemichannels expressed in oocytes. In: Latorre R, Saez JC (eds) From Ion Channels to Cell-to-Cell Conversations. Plenum Press, pp 309–321

    Google Scholar 

  • Zeidel ML, Albalak A, Grossman E, Carruthers A (1992) Role of glucose carrier in human erythrocyte water permeability. Biochem 31:589–596

    CAS  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochem 31:7436–7440

    CAS  Google Scholar 

  • Zeuthen T (1981) Isotonic transport and intracellular osmolarity in the necturus gall-bladder epithelium. In: Ussing HH, Bindslev N, Lassen NA et al. (eds) Munksgaard, Copenhagen, Copenhagen, pp 313–331

    Google Scholar 

  • Zeuthen T (1982) Relations between intracellular ion activities and extracellular osmolarity in necturus gallbladder epithelium. J Membr Biol 66:109–121

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1983) Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolarities. J Membr Biol. 76113–122

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1991b) Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol 444:153–173

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1991a) Water permeability of ventricular cell membrane in choroid plexus epithelium from necturus maculosus. Journal of Physiology 444:133–151

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1992) From contractile vacuole to leaky epithelia. Biophys Biochem Acta 1113:229–258

    CAS  Google Scholar 

  • Zeuthen T (1993) Low reflection coefficient for KCl in an epithelial membrane. In: Ussing HH, Fischbarg J, Sten-Knudsen O et al. (eds) Isotonic Transport in Leaky Epithelia. Munksgaard, Copenhagen, pp 298–307

    Google Scholar 

  • Zeuthen T (1994) Cotransport of K+, Cl and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478:203–219

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1995) Molecular mechanisms for passive and active transport of water. Int Rev Cyt 160:99–161

    CAS  Google Scholar 

  • Zeuthen T (1996) Molecular Mechanisms of Water Transport. Springer, Berlin, R.G. Landes Company, Texas

    Google Scholar 

  • Zeuthen T, Hamann S, La Cour M (1996) Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J Physiol 497:3–17

    PubMed  CAS  Google Scholar 

  • Zeuthen T, Klaerke DA (1999) Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem 274:21631–21636

    PubMed  CAS  Google Scholar 

  • Zeuthen T, Meinild A-K, Klaerke DA, Loo DDF, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 89:307–312

    PubMed  CAS  Google Scholar 

  • Zeuthen T, Stein WD (1994) Co-transport of salt and water in membrane proteins: Membrane proteins as osmotic engines. J Membr Biol 137:179–195

    PubMed  CAS  Google Scholar 

  • Zimmerberg J, Bezanilla F, Parsegian VA (1990) Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys J 57:1049–1064

    PubMed  CAS  Google Scholar 

  • Zimmerberg J, Parsegian VA (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36

    PubMed  CAS  Google Scholar 

  • Zimmerman SB, Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: An adaptive effect. Proc Natl Acad Sci 84:1871–1875

    PubMed  CAS  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: Biochemical, biophysical, and physiological consequences. Ann Rev Biophys Biomol Struct 22:27–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Zeuthen, T. (2000). Molecular water pumps. In: Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119578

Download citation

  • DOI: https://doi.org/10.1007/BFb0119578

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66627-1

  • Online ISBN: 978-3-540-48082-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics