Skip to main content

A new computational model of friction applied to haptic rendering

  • Chapter 10 Haptics
  • Conference paper
  • First Online:
Experimental Robotics VI

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 250))

Abstract

A time-free, drift-free, multi-dimensional model of friction is introduced. A discrete implementation is developed which exhibits four solution regimes: sticking, creeping, oscillating, and sliding. Its computational solution is efficient to compute online and is robust to noise. It is applied to haptic rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayward V., Astley O. R. 1996. Performance measures for haptic interfaces. In: Giralt G., Hirzinger G., Eds., 1996 Robotics Research: The 7th International Symposium, Springer Verlag. pp. 195–207.

    Google Scholar 

  2. Armstrong-Helouvry B., Dupont P., and Canudas De Wit C., 1994. Survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica. 30(7):1083–1138.

    Article  MATH  Google Scholar 

  3. Polycarpou A., Soom A. 1992. Transitions between Sticking and Slipping. In: Ibrahim R. A., Soom, A., Eds., 1992. Proc. Friction Induced Vibration, Chatter, Squeal, and Chaos, ASME Winter Annual Meeting, Anaheim, DE Vol. 49, New York: ASME, pp. 139–48.

    Google Scholar 

  4. Dahl, P. R. 1968. A solid friction model. TOR-158(3107-18). The Aerospace Corporation, El-Secundo, California.

    Google Scholar 

  5. Karnopp D. 1985. Computer Simulation of stick slip friction in mechanical dynamic systems. ASME J. of Dyn. Systems, Meas. and Control. 107:100–103.

    Article  Google Scholar 

  6. Salcudean S. E., Vlaar T. D. 1994. On the emulation of stiff walls and static friction with a magnetically levitated input/output device. Proc. ASME Dynamic Systems and Control Division, DSC-Vol. 55-1, New York: ASME, pp.303–310.

    Google Scholar 

  7. Haessig D. A., Friedland B. 1991. On the modeling and simulation of friction. ASME J. of Dyn. Systems, Meas. and Control. 113:354–362.

    Article  Google Scholar 

  8. Chen, J., DiMattia, C., Taylor II, R. M., Falvo, M., Thiansathon, P., Superfine, R. 1997. Sticking to the point: A friction and adhesion model for simulated surfaces. Prod. ASME Dynamics Systems and Control Division, DSC-Vol. 61, pp. 167–171.

    Google Scholar 

  9. Dahl, P. R. 1976. Solid friction damping of mechanical vibrations. AIAA J., 14(2):1675–82.

    Google Scholar 

  10. Canudas de Witt C., Olsson H., Aström K. J. 1995. A new model for control of systems with friction. IEEE T. on Automatic Control. 40(3):419–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent Hayward or Brian Armstrong .

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London Limited

About this paper

Cite this paper

Hayward, V., Armstrong, B. (2000). A new computational model of friction applied to haptic rendering. In: Experimental Robotics VI. Lecture Notes in Control and Information Sciences, vol 250. Springer, London. https://doi.org/10.1007/BFb0119418

Download citation

  • DOI: https://doi.org/10.1007/BFb0119418

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-210-5

  • Online ISBN: 978-1-84628-541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics