Skip to main content

Elektrolumineszenz von II–VI-Verbindungen

  • Chapter
  • First Online:
Festkörperprobleme V

Part of the book series: Advances in Solid State Physics ((ASSP,volume 5))

Abstract

The direct conversion of electrical energy into light energy when applying electric fields on II–VI-compounds has been studied on powders, thin films, and single crystals. As to the mechanism of II–VI-luminescence no final theory has yet been developed which can explain all experimental facts. This review tries to give an outline of the current trends of both experimental work and theoretical explanation.

To investigate the electroluminescence on powders excited by ac-fields (Destriau-effect) two ways are used: 1. the light of a great number of grains with numerous light spots is enregistered (macroscopic measurements), 2. the emission of single light spots is observed in a microscope (microscopic measurements).

One of the most important microscopic observation is that the light spots generally emit in one half period of the field only, whereas other spots emit whenever the field has the opposite direction. A close relation between the direction of emitting lines and the crystal structure, and of irregularities of the crystal lattice has been found. In ZnS powders the best electroluminescence is obtained when both cubic and hexagonal phases alternate in the lattice and when copper precipitates at the disturbed lattice sites. The intensity of the time integrated light emission I of a single spot depending on the applied voltage U follows approximately the relation I∼ exp (−B/U), whereas the intensity I of many dissimilar lines observed simultaneously obeys a law I∼ exp (−B/U 1/2) over 12 orders of magnitude.

The time integrated brightness of single spots increases sublinearily with the frequency of the applied field and saturates at higher voltages. The brightness of a number of dissimilar spots, however, increases first linearily with increasing frequency and saturates then, provided there are not too much different competint recombination centers. If there are more than one type of recombination centers with different capture cross section of free charges and different energetic distances from the bands, as Cu, Mn, Co, Fe, Ni in ZnS have, the phenomenon of delayed recombination influences the spectral distribution and the frequency dependence: electrons and holes, which are liberated by the electric field, are separated within a half period of the ac-field. The holes are quickly captured by acceptors with high capture cross section. After reversing the electric field the returning electrons will recombine either within the centers with high capture cross section for defectelectrons, when the frequency is high and the lattice temperature low, or they will recombine according to a fermi-distribution of holes, if the frequency is low and the temperature sufficiently high. This phenomenon gives the possibility of studying the hole migration in luminescence and to determine capture cross sections and energetic distances of levels from their bands by statistical and kinetical methods. So far the recombination properties of the Destriau-effect are quite well understood.

However, as far as the excitation mechanism of the Destriau-effect is concerned, there are several competing models and assumptions: alternating injection of holes and/or electrons from copper precipitations or Cu2S in ZnS, creation of free electrons by direct action of the electric field (tunnel effect), and acceleration and excitation of luminescence centers by electron-impurity-collision (hot electron model). No direct proof of one or the other excitation mechanism of the Destriau-effect in powders has yet been delivered. Better understanding of the excitation mechanism has been achieved with thin films and single crystals. Theoretical considerations show that pn-homojunctions in binary II–VI-crystals can be obtained, when the ratio of the radii of cation and anion is close to unity. If this is not the case, the selfcompensation by lattice defects prevents the creation of efficient n- or p-conduction. Efficient pn-injection luminescence has indeed been obtained in CdTe since it had been discovered that phosphorus provides very shallow acceptor centers. External quantum efficiencies of CdTe as high as 12% at 77°K have been measured at 77°K within a spectral range of 8300 to 8800 Å, but not lasering action has yet been observed. In order to shift the emission into the visible region of the spectrum II–VI-crystals with more than two components have been prepared. In Cd x Zn1−x Te pn-homojunctions have been obtained by diffusing simultaneously Zn and P into n-type CdTe: (Al)-crystals. The highest quantum efficiency of this kind of diodes ever measured was 4%, a band gap as high as 2.1 eV has been reached. One of the advantages of these crystals is the possibility of applying good ohmic contacts, which can stand high currents.

Similar diodes have been made from ZnSxTe1−x crystals, which also have been found having amphoteric conductivity, as predicted by theoretical considerations. Electroluminescence of heterojunctions has been observed for instance in ZnSe−Cu2Se and ZnS−Cu2S. In this case the luminescent semiconductors are coated by chemically different semiconducting materials of opposite conductivity and different bandgap, which does not form a complete series of solid solutions with the luminescent semiconductors. Thin insulating films between the p-type and the n-type semiconductor enhance the luminescence considerably, thus the working mechanism is assumed to be a p-tunneling, process. The quantum efficiency of heterojunctions is much lower than the efficiency of pn-homojunctions.

Thin films of wide bandgap material like ZnSe and ZnS show electroluminescence as well as photo-electroluminescence. As in single crystals a thin semi-isolating sheet at the electrodes is decisive for the working of electroluminescence in thin films. In photo-electroluminescence of thin films the electroluminescence emission is triggered by incident radiation and can reach higher intensities than those of indicent radiation. The activator Manganese plays an important, but not yet, clarified role.

Apart from the injection luminescence in pn-homojunctions and pn-heterojunctions, impact ionisation electroluminescence, thus luminescence caused by “hot” electrons has been identified in ZnSe. In the same material tunnel injection through thin insulating films, injection electroluminescence in inversion layers and tunnel injection electroluminescence at the tips of conducting spikes occur.

Therefore, there is certainly not only one single excitation mechanism of electroluminescence in II–VI-compounds, but at least five which can clearly be distinguished by qualitative criteria, as far as single crystals are concerned. This gives the answer to the question whether electrons and holes in electroluminescence of II–VI-compounds are always in thermal equilibrium with the lattice or not.

19 Abbildungen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. G. Destriau, J. Chim. Phys. 33, 587 (1936).

    Google Scholar 

  2. D. Hahn, Erg. exakt. Naturwiss. 31, 1 (1959).

    Article  Google Scholar 

  3. H. F. Ivey, “Electroluminescence and Related Effects” in “Advances in Electronics and Electron Physics”, Academic Press, New York und London 1963.

    Google Scholar 

  4. H. K. Henisch, “Electroluminescence”, Pergamon Press, Oxford, London, New York, Paris 1962.

    MATH  Google Scholar 

  5. F. Matossi und H. Gutjahr, phys. stat. sol. 3, 167 (1963).

    Article  ADS  Google Scholar 

  6. A. N. Georgobiani, Transactions (Trudy) of the P. N. Lebedev Physics Institute 23, 3 (1963).

    Google Scholar 

    Google Scholar 

  7. W. Schultz, in “Festkörperprobleme V” (Her. v. O. Madelung) (1966).

    Google Scholar 

  8. H.-G. Grimmeiß, in “Festkörperprobleme V” (Her., v. O. Madelung) (1966).

    Google Scholar 

  9. W. Franz und L. Tewordt, in “Halbleiterprobleme III”, 1 (Her. v. W. Schottky) (1956).

    Google Scholar 

  10. G. Destriau, Phil. Mag. 7, 38, 700, 774 (1947).

    Google Scholar 

  11. D. Curie, J. Phys. Radium 13, 317 (1952); 14, 135, 510, 672 (1953).

    Article  Google Scholar 

  12. W. W. Piper und F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).

    Article  Google Scholar 

  13. P. Zalm, G. Diemer und H. A. Klasens, Philips Res. Repts. 9, 81 (1954).

    Google Scholar 

  14. G. F. Alfrey und J. B. Taylor, Proc. Phys. Soc. (London) 66 B, 775 (1955).

    ADS  Google Scholar 

  15. D. Curie, “Progress in Semiconductors” 2, 249, Wiley, New York 1957.

    Google Scholar 

  16. W. A. Thornton, J. Electrochem. Soc. 108, 636 (1961).

    Article  Google Scholar 

  17. A. G. Fischer, J. Electrochem. Soc. 110, 733 (1963).

    Article  Google Scholar 

  18. H. Gobrecht, D. Hahn und H.-E. Gumlich, Z. Physik 136, 612 (1954).

    Article  ADS  Google Scholar 

  19. P. Zalm, Philips Res. Repts. 11, 417 (1956).

    Google Scholar 

  20. A. H. McKeay und E. G. Steward, J. Electrochem. Soc. 104, 41 (1957).

    Article  Google Scholar 

  21. L. Eisenmann, Ann. Phys. 10, 129 (1952).

    Article  Google Scholar 

  22. G. Bonfiglioli und A. Suardo, Technical Note No. 3, September 1964, Office of the Aerospace Research, United States Air Force.

    Google Scholar 

  23. W. Lehmann, J. Electrochem. Soc. 107, 20 (1960).

    Article  Google Scholar 

  24. H.-E. Gumlich und R. Moser, Z. Naturforschg. 20a, 1490 (1965).

    ADS  Google Scholar 

  25. J. Mattler und T. Ceva, in “Luminescence of Organic and Inorganic Materials”, 537, Wiley, New York 1962.

    Google Scholar 

  26. W. Lehmann, J. Electrochem. Soc. 110, 759 (1963).

    Article  Google Scholar 

  27. J. L. Gillson jr. und F. J. Darnell, Phys. Rev. 125, 149 (1962).

    Article  ADS  Google Scholar 

  28. A. G. Fischer, J. Electrochem. Soc. 109, 1043 (1962).

    Article  Google Scholar 

  29. J. Kubátová und K. Pátek, phys. stat. sol. 2, K 265 (1962).

    ADS  Google Scholar 

  30. J. Schanda, Acta Imeco, 24-HU-135, 9, (1964).

    Google Scholar 

  31. M. Schön, Z. Physik 119, 463 (1942), Ann. Phys. (6) 3, 333 (1948).

    Article  ADS  Google Scholar 

  32. I. Broser und R. Broser-Warminsky, Ann. Phys. (6) 16, 361 (1955).

    Article  Google Scholar 

  33. P. Goldberg, J. Electrochem. Soc. 106, 948 (1959).

    Article  Google Scholar 

  34. I. Broser, H.-E. Gumlich und R. Moser, Z. Naturforschg. 20a, 1648 (1965).

    ADS  Google Scholar 

  35. W. Hoogenstraaten, Philips Res. Repts. 13, 575 (1958).

    Google Scholar 

  36. H.-E. Gumlich, R. Moser und E. Neumann, phys. stat. sol. 17, Nr. 2.

    Google Scholar 

  37. H.-E. Gumlich und H.-J. Schulz, J. Phys. Chem. Sol. 27, 187 (1966).

    Article  ADS  Google Scholar 

  38. C. H. Haake, Phys. Rev. 101, 490 (1956).

    Article  ADS  Google Scholar 

  39. H. Gobrecht, H. Nelkowski und R. Schelgelmilch, Halbleiterausschuß der Deutschen Physikalischen Gesellschaft, Freudenstadt 1965.

    Google Scholar 

  40. H.-E. Gumlich, R. Moser und E. Neumann, phys. stat. sol. 7, K 163 (1964).

    ADS  Google Scholar 

  41. s. z. B. F. Stöckmann, in “Halbleiterprobleme VI” 279 (Herv. v. F. Sauter) (1961).

    Google Scholar 

  42. R. F. Brebrick, J. Phys. Chem. Sol. 4, 190 (1958), J. Phys. Chem. Sol. 18, 116 (1961).

    Article  ADS  Google Scholar 

  43. F. A. Kröger und H. J. Vink, in “Solid State Physics” (Her. v. F. Seitz und D. Turnbull) 3, 310, Academic Press, New York 1956.

    Google Scholar 

  44. G. Mandel, F. F. Morehead und P. R. Wagner, Final Technical Summary Report “II–VI-Laser Materials Study”, IBM Watson Research Center, Yorktown Heights, New York 1964.

    Google Scholar 

  45. A. G. Fischer, in “Luminescence of Inorganic Solids” (herv. v. P. Goldberg) Academic Press, New York 1965 (in Vorbereitung).

    Google Scholar 

  46. B. S. Gourary und F. J. Adrian, in “Solid State Physics” (Her. v. F. Seitz und D. Turnbull) z 16, 188, Academic Press, New York 1960.

    Google Scholar 

  47. J. A. Krummhansl und N. Schwartz, Phys. Rev. 89, 1154 (1953).

    Article  ADS  Google Scholar 

  48. G. Mandel und F. F. Morehead, Appl. Phys. Let. 4, 143 (1964).

    Article  ADS  Google Scholar 

  49. F. F. Morehead und G. Morehead, Appl. Phys. Let. 5, 53 (1964).

    Article  ADS  Google Scholar 

  50. A. G. Fischer, Conference on Luminescence, University of Hull, England, Sept. 1964.

    Google Scholar 

  51. M. Aven und W. Garwacki, Appl. Phys. Let. 5, 160 (1964).

    Article  ADS  Google Scholar 

  52. M. Aven und D. A. Cusano, J. Appl. Phys. 35, 606 (1964).

    Article  ADS  Google Scholar 

  53. D. A. Cusano und F. E. Williams, J. phys. radium 17, 742 (1956).

    Article  Google Scholar 

  54. W. A. Thornton, J. Appl. Phys. 30, 123 (1959).

    Article  ADS  Google Scholar 

  55. P. Goldberg und J. W. Nickerson, J. Appl. Phys. 34, 1601 (1963).

    Article  ADS  Google Scholar 

  56. A. G. Fischer, Appl. Phys. Let., 12, 313 (1964).

    ADS  Google Scholar 

  57. A. G. Fischer und H. I. Moss, J. Appl. Phys. 34, 2112 (1963).

    Article  ADS  Google Scholar 

  58. A. G. Fischer, 7. Internationale Konferenz über Halbleiterphysik, Symposion über strahlende Rekombinationen in Halbleitern, 259, Dunod, Paris 1964.

    Google Scholar 

  59. D.A. Cusano, Report No. 61-RL 28796 (1961).

    Google Scholar 

  60. M. Aven, Appl. Phys. Let. 7, 146 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fritz Sauter

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Friedr. Vieweg & Sohn Braunschweig

About this chapter

Cite this chapter

Gumlich, H.E. (1966). Elektrolumineszenz von II–VI-Verbindungen. In: Sauter, F. (eds) Festkörperprobleme V. Advances in Solid State Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119278

Download citation

  • DOI: https://doi.org/10.1007/BFb0119278

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75317-9

  • Online ISBN: 978-3-540-75318-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics