Advertisement

Quantum chemical studies on the submolecular structure of the nucleic acids

  • S. Fraga
  • C. Valdemoro
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 4)

Keywords

High Occupy Molecular Orbital Genetic Code Orbital Energy Quantum Chemical Study Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, E. D., G. Berthier, Y. Hirshberg, E. Loewenthal, A. Pullman, and B. Pullman. Fulvenes and thermochromic ethylenes. IX. Bull. Soc. Chim. France 18, 669 (1951).Google Scholar
  2. Berthod, H., et A. Pullman: Sur le calcul des caractéristiques du, squelette σ des molécules conjuguées. J. Chim. Phys. 62, 942 (1965).Google Scholar
  3. —, C. Giessner-Prettre, and A. Pullman: Theoretical study of the electronic properties of the purine and pyrimidine components of the nucleic acids. I. Theoret. Chim. Acta (Berlin) 5, 53 (1966).CrossRefGoogle Scholar
  4. Birss, F. W., and S. Fraga: Generalized self-consistent-field theory. I. J. Chem. Phys. 38, 2552 (1963).CrossRefGoogle Scholar
  5. Brenner, S.: On the impossibility of all overlapping triplet codes in information transfer from nucleic acids to proteins. Proc. Nat. Acad. Sci. U.S. 43, 687 (1957).CrossRefGoogle Scholar
  6. Brion, H., C. Moser, and M. Yamazaki: Electronic structure of nitric oxide. J. Chem. Phys. 30, 673 (1959).CrossRefGoogle Scholar
  7. Clark, L. B., and I. Tinoco: Correlations in the ultraviolet spectra of the purine and pyrimidine bases. J. Am. Chem. Soc., 87, 11 (1965).CrossRefGoogle Scholar
  8. Claverie P., B. Pullman, and J. Caillet: Vander Waals-London interactions between stacked purines and pyrimidines. J. Theoret. Biol. 12, 419 (1966).CrossRefGoogle Scholar
  9. Crick, F. H. C.: Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol. 19, 548 (1966a).Google Scholar
  10. — The genetic code. III. Sci. am. 215, 55 (1966b).Google Scholar
  11. — , and J. D. Watson: Complementary structure of deoxyribonucleic acid. Proc. Roy. Soc. (London) Ser. A 233, 80 (1954).CrossRefGoogle Scholar
  12. Dayhoff, M. O.: Computer aids to protein sequence determination. J. Theoret. Biol. 8, 97 (1964).CrossRefGoogle Scholar
  13. Denis, A., and A. Pullman: Theoretical study of the electronic properties of biological purines and pyrimidines III. Theoret. Chim. Acta (Berlin) 7, 110 (1967).CrossRefGoogle Scholar
  14. Del Re, G.: A simple MO-LCAO method for the calculation of charge distributions in saturated organic molecules. J. Chem. Soc. (London) 4031 (1958).Google Scholar
  15. Fernandez-Alonso, J. I.: Electronic structures in Quantum Biochemistry, Advances in Chemical Physics, vol. 7, edited by J. Duchesne. New York: Interscience Publishers 1964.Google Scholar
  16. Fischer-Hjalmars, I.: Deduction of the zero, differential overlap approximation from a orthogonal atomic orbital basis. J. Chem. Phys 42, 1962 (1965).CrossRefGoogle Scholar
  17. Fraga, S., and F. W. Birss: Genealized self-consistent-field theory. II. J. Chem. Phys. 40, 3203 (1964).CrossRefGoogle Scholar
  18. Fraga, S., and B. J. Ransil: Formulae for the evaluation of electronic energies in the LCAO MO SCF approximation. Technical Report, LMSS, University of Chicago, 236 (1961).Google Scholar
  19. Fraga, S., and C. Valdemoro: The electronic structure of polynucleotides and the genetic code. Technical Report TC-6703, Department of Chemistry, University of Alberta (1967).Google Scholar
  20. Fukui K., H. Kato, and T. Yonezawa: A molecular orbital theory of saturated compounds. I. Bull. Chem. soc. Japan 33, 1197 (1960a).CrossRefGoogle Scholar
  21. —: A molecular orbital theory of saturated compounds. II. Bull. Chem. Soc. Japan 33, 1201 (1960b).CrossRefGoogle Scholar
  22. —: Frontier electron density in saturated hydrocarbons. Bull. Chem. Soc. Japan 34, 442 (1961).CrossRefGoogle Scholar
  23. —: A new quantum-mechancial reactivity index for saturated compounds. Bull. Chem. Soc. Japan 34, 1111 (1961).CrossRefGoogle Scholar
  24. Gamow, G.: Possible relation between deoxyriboncleic acid and protein structure. Nature 173, 318 (1954a).CrossRefGoogle Scholar
  25. Gamow, G.: Possible mathematical relation, between deoxyribonucleic acid and proteins. Biol. Medd. Dan. Vid. Selsk. 22, No. 3 (1954b).Google Scholar
  26. Gamow, G.: On the information transfer from nucleic acids to proteins. Biol. Medd. Dan. Vid. Selsk. 22, No. 8 (1955).Google Scholar
  27. —, A. Rich, and M. Ycas: Problem of information transfer from nucleic acids to proteins. Advan. Biol. Med. Phys. 4, 23 (1956).Google Scholar
  28. — , and M. Ycas: Statistical correlation, of protein and ribonucleic acid composition. Proc. Nat. Acad. Sci. U.S. 41, 1011 (1955).CrossRefGoogle Scholar
  29. Garvilov, V. Yu., and Yu. N. Zograf: The nature of the biochemical code. Soviet Phys.-Usp. (English Transl.) 5, 634 (1963).Google Scholar
  30. Goeppert-Mayer, M., and A. L. Sklar: Calculations of the lower excited levels of benzene. J. Chem. Phys. 6, 645 (1938).CrossRefGoogle Scholar
  31. Golomb, S. W., B. Gordon, and L. R. Welch: Comma-free codes. Can. J. Math. 10, 202 (1958).Google Scholar
  32. Golomb, S. W., L. R. Welch, and M. Delbruck: Construction, and properties of comma-free codes. Biol. Med. Danske Vid. Selskab 23, No. 9 (1958).Google Scholar
  33. Hinze, J., and H. H. Jaffe: Electronegativity. I. J. Amer. Chem. Soc. 84, 540 (1962).CrossRefGoogle Scholar
  34. Hoffman, R.: An extended Hückel theory. I. J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
  35. Hoffmann, T. A., and J. Ladik. Some properties of DNA. Advances in Chemical Physics, vol. 7, edited by J. Duchesne. New York: Intescience Publishers 1964.Google Scholar
  36. Holley, R. W.: The nucleotide sequence of a nucleic acid. Sci. Am. 214, 30 (1966).Google Scholar
  37. Inuzuka, K.: The calculation of the energy levels of acetaldehyde by a semi-empirical molecular orbital method including the hyperconjugation effect. Bull. Chem. Soc. Japan 36, 1045 (1963).CrossRefGoogle Scholar
  38. Jehle, H.: Replication of double-strand nucleic acids. Proc. Nat. Acad. Sci. U.S. 53, 1451 (1965).CrossRefGoogle Scholar
  39. Julg, A.: New procedure for the semi-theoretical calculation of mono-and dicentric coulombic integrals. J. Chim. Phys. 55, 413 (1958).Google Scholar
  40. Katagiri, S., and C. Sandorfy: Pariser and Parr type calculations on saturated hydrocarbons. I. Theoret. Chim. Acta (Berlin) 4, 203 (1966).CrossRefGoogle Scholar
  41. Kaufman, J.: Semirigorous LCAO-MO-SCF methods for three-dimensional molecular calculations including electron repulsion. J. Chem. Phys. 43, 152 (1965).CrossRefGoogle Scholar
  42. Klopman, G.: Application de la théorie des orbitales moléculaires a l’étude des molécules paraffiniques. Helv. Chim. Acta, 45, 711 (1962).CrossRefGoogle Scholar
  43. — : Quantum mechanical treatments of the paraffins. Tetrahedron, Suppl. 2, 19, 111 (1963).CrossRefGoogle Scholar
  44. — : A semiempirical treatment of molecular structures. II. J. Am. Chem. Soc. 86, 4550 (1964).CrossRefGoogle Scholar
  45. Koopmans, T. A.: Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1, 104 (1934).CrossRefGoogle Scholar
  46. Ladik, J., and K. Appel: Investigation of the π electron system of uracil with different semiempirical methods. Quantum Theory Project, University of Florida, Preprint No. 26 (1962).Google Scholar
  47. —: Pariser-Parr-Pople calculations on different DNA constituents. Theoret. Chim. Acta (Berlin) 4, 132 (1966).CrossRefGoogle Scholar
  48. Ladik, J., and T. A. Hoffmann: Quantum mechanical calculation of the electronic structure of DNA. Biopolymers Symposia, No. 1, edited by M. Weissbluth 1964.Google Scholar
  49. Langridge, R., H. R. Wilson, C. W. Hooper, M. H. F. Wilkins, and L. D. Hamilton: The molecular configuration of deoxyribonucleic acid. I. J. Mol. Biol. 2, 19 (1960).CrossRefGoogle Scholar
  50. —, D. A. Marvin, W. E. Seeds, H. R. Wilson, C. W. Hooper, M. H. F. Wilkins, and L. D. Hamilton: The molecular configuration of deoxyribonucleic acid. II. J. Mol. Biol. 2, 38 (1960b).Google Scholar
  51. Lazdins, D., and M. Karplus: The inductive effect in the toluene anion radical. J. Am. Chem. Soc. 87, 920 (1965).CrossRefGoogle Scholar
  52. Lorguet, J. C.: The electronic structure of ionized molecules. II. Mol. Phys. 9, 101 (1965).CrossRefGoogle Scholar
  53. Löwdin, P.-O.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys., 18, 365 (1950).CrossRefGoogle Scholar
  54. — : Quantum theory of cohesive properties of solids. Advan. Phys. 5, 3 (1956).CrossRefGoogle Scholar
  55. — : Quantum genetics and the aperiodic solid. Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. Advances in Quantum Chemistry, vol. 2, edited by P.-O. Löwdin. New York: Academic Press 1964.Google Scholar
  56. Lykos, P. G.: The parameters used in semiempirical molecular orbital theory for conjugated hydrocarbons. J. Chem. Phys. 35, 1249 (1961).CrossRefGoogle Scholar
  57. Malrieux, J. P., A. Pullman, et M. Rossi: Etude théorique des densités de spin dans des ions négatifs pouvant présenter des phénomènes de quasi-dégénérescence. Theoret. Chim. Acta (Berlin) 3, 261 (1965).CrossRefGoogle Scholar
  58. Mataga, N., and K. Nishimoto: Electronic structure and spectra of nitrogen heterocycles. Z. Physik. Chem. 13, 140 (1957).Google Scholar
  59. McWeeny, R.: The valence-bond theory of molecular structure. III. Proc. Roy. Soc. (London) Ser. A 227, 288 (1955).CrossRefGoogle Scholar
  60. — : The density matrix in self-consistant field theory. II. Proc. Roy. Soc. (London) Ser. A 237, 355 (1956).CrossRefGoogle Scholar
  61. — : The self-consistent generalization of Hückel theory. Molecular orbitals in Chemistry, Physics, and Biology, edited by P.-O. Löwdin and B. Pullman: New York: Academic Press, 1964.Google Scholar
  62. Morita, T.: Bond localization and the hyperconjugative effect in the aromatic carbonium ions. I. Bull. Chem. Soc. Japan 32, 893 (1960a).CrossRefGoogle Scholar
  63. — : Bond localization and the hyperconjugative effect in the aromatic carbonium ions. II. Bull. Chem. Soc. Japan 33, 1486 (1960b).CrossRefGoogle Scholar
  64. Nagata, C. A., A. Imamura, Y. Tagashira, and M. Kodama: Semiempirical selfconsistent field molecular orbital calculation of the electronic structure of the base components of nucleic acids. Bull. Chem. Soc. Japan 38, 1638 (1965).CrossRefGoogle Scholar
  65. Nordio, P., M. V. Pavan, and G. Giacometti: Molecular orbital study of hyperfine splitting constants in ethyl and cyclohexadienyl radicals. Theoret. Chim. Acta (Berlin) 1, 302 (1963).CrossRefGoogle Scholar
  66. Ohno, K.: Private communication to J. Ladik and K. Appel, 1962.Google Scholar
  67. Pariser, R., and R. G. Parr: A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys. 21, 466 (1953a).CrossRefGoogle Scholar
  68. —: A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II. J. Chem. Phys. 21, 767 (1953b).CrossRefGoogle Scholar
  69. Parr, R. G.: A method for estimating electronic repulsion integrals over LCAO MO’s in complex unsaturated molecules. J. Chem. Phys. 20, 1499 (1952).CrossRefGoogle Scholar
  70. — : The quantum theory of molecular electronic structure. New York: W. A. Benjamin, Inc. 1964.Google Scholar
  71. —, F. O. Ellison, and P. G. Lykos: Generalized antisymmetrized wave functions for atoms and molecules. J. Chem. Phys. 24, 1106 (1956).CrossRefGoogle Scholar
  72. Parry, G. S.: Crystal structure of uracil. Acta Cryst. 7, 313 (1954).CrossRefGoogle Scholar
  73. Pople, J. A.: Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 49, 1375 (1953).CrossRefGoogle Scholar
  74. — and D. P. Santry: A molecular orbital theory of hydrocarbons. I. Mol. Phys. 7, 269 (1963).CrossRefGoogle Scholar
  75. —, and G. A. Segal: Approximate self-consistent molecular orbital theory. I. J. Chem. Phys. 43, 129 (1965).CrossRefGoogle Scholar
  76. Pritchard, H. O., and H. A. Skinner: The concept of electronegativity. Chem. Rev. 55, 745 (1955).CrossRefGoogle Scholar
  77. Pullman, A., et B. Pullman: Recherches sur la structure électronique des constituants cellulaires fondamentaux et des composés actifs en chimiotherapie anticancéreuse. II. Bull. Soc. Chim. France 766 (1958).Google Scholar
  78. Pullman, A., et B. Pullman: Recherches sur la structure électronique des constituants cellulaires fondamentaux et des composés actifs en chimiothérapie anticancéreuse. VI. Bull. Soc. Chim. France 594 (1959).Google Scholar
  79. Pullman, B., P. Claverie, and J. Caillet: Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine pairs. Proc. Nat. Acad. Sci. U.S. 55, 904 (1966).CrossRefGoogle Scholar
  80. —, M. Mayot, and G. Berthier: The occurrence of hypochromic shifts on alkyl substitution: Structure and color of methylated derivatives of azulene. J. Chem. Phys. 18, 257 (1950).CrossRefGoogle Scholar
  81. — and A. Pullman: The electronic structure of the purine-pyrimidine pairs of DNA. Biochem. Biophys. Acta 36, 343 (1959).CrossRefGoogle Scholar
  82. Rein, R., and F. E. Harris: Studies of hydrogen-bonded systems. I. J. Chem. Phys. 41, 3393 (1964).CrossRefGoogle Scholar
  83. —: Studies of hydrogen-bonded systems. II. J. Chem. Phys. 42, 2177 (1965a).CrossRefGoogle Scholar
  84. —: Studies of hydrogen-bonded, systems. III. J. Chem. Phys. 43, 4415 (1965b).CrossRefGoogle Scholar
  85. — , and J. Ladik: Semiempirical SCF-LCAO-MO calculation of the electronic structure of the guanine-cytosine base pair: Possible interpretation of the mutagenic effect of radiation. J. Chem. Phys. 40, 2466 (1964).CrossRefGoogle Scholar
  86. Roothaan, C. C. J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69 (1951a).CrossRefGoogle Scholar
  87. — A study of two-center integrals useful in calculations on molecular structure. I. J. Chem. Phys. 19, 1445 (1951b).CrossRefGoogle Scholar
  88. Ruedenberg, K.: Quantum mechanics of mobile electrons in conjugated bond systems I. J. Chem. Phys. 34, 1861 (1961).CrossRefGoogle Scholar
  89. Sandorfy, C.: LCAO MO calculations on saturated hydrocarbons and their substituted derivatives. Can. J. Chem. 33, 1337 (1955).CrossRefGoogle Scholar
  90. — , and R. Daudel: Molecular orbital method applied to the study of σ bonds. Compf. Rend. 238, 93 (1954).Google Scholar
  91. Söll, D., E. Ohtsuka, D. S. Jones, R. Lohrmann, H. Hayatsu, S. Nishimura, and H. G. Khorana: Studies on polynucleotides. XLIX. Proc. Nat. Acad. Sci. U.S. 54, 1378 (1965).CrossRefGoogle Scholar
  92. Spencer, M.: The stereochemistry of deoxyribonucleic acid. I. Acta Cryst. 12, 59 (1959).CrossRefGoogle Scholar
  93. Streitweiser, Jr., A.: Molecular orbital theory for organic chemists. New York: John Wiley & Sons, Inc. 1961.Google Scholar
  94. Tanaka, M., and S. Nagakura: Electronic structures and spectra of adenine and thymine. Theoret. Chim. Acta (Berlin) 6, 320 (1966).CrossRefGoogle Scholar
  95. Tinoco, I.: Hypochromism in polynucleotides. J. Am. Chem. Soc. 82, 4785 (1960).CrossRefGoogle Scholar
  96. Valdemoro, C., and S. Fraga: The electronic structure of puric and pyrimidinic bases and the biological codes. Technical Report TC-6701, Department of Chemistry, University of Alberta (1967a).Google Scholar
  97. Valdemoro, C., and S. Fraga: The electronic structure of hydrogen-bonded pairs of bases: guanine-cytosine and adenine-thymine. Technical Report TC-6702, Department of Chemistry, University of Alberta (1967b).Google Scholar
  98. Veillard, A., and E. Clementi: Complete multi-configuration self-consistent field theory. Theoret. Chim. Acta (Berlin) 7, 133 (1967).CrossRefGoogle Scholar
  99. — , and B. Pullman: Etude par la méthode du champ moleculaire self-consistant de la structure electronique des bases puriques er pyrimidiques d’interêt biochimique. J. Theoret. Biol. 4, 37 (1963).CrossRefGoogle Scholar
  100. Voet, D., W. B. Gratzer, R. A. Cox, and P. Doty: Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1, 193 (1963).CrossRefGoogle Scholar
  101. Watson, J. D., and F. H. C. Crick: A, structure for deoxyribose nucleic acid. Nature 171, 737 (1953a).CrossRefGoogle Scholar
  102. —: Genetical implications of the structure of deoxyribose nucleic acid. Nature 171, 964 (1953b).CrossRefGoogle Scholar
  103. Woese, C. R.: Nature of the biological code. Nature 194, 1114 (1962).CrossRefGoogle Scholar
  104. Yoshizumi, H.: Charge displacement in substituted paraffins. Trans. Faraday Soc. 53, 125 (1957).CrossRefGoogle Scholar

Appendix I Reviews and other References

  1. Beleznay F., G. Biezo, and J. Ladik: Theoretical estimate of the conductivity of DNA. Physics Letters 11, 234 (1964).CrossRefGoogle Scholar
  2. Bernhard, R.: Quantum Chemistry of high energy bio-molecules. Scient. Res. 1, 25 (1966).Google Scholar
  3. Biczo, G., J. Ladik, and J. Gergely: Approximate calculation of the tunnelling frequencies of the proton in the N−H−O hydrogen bond of the nucleotide base pairs. Physics Letters 13, 317 (1964).CrossRefGoogle Scholar
  4. De Voe, H., and I. Tinoco, Jr.: The stability of helical polynucleotides: Base contributions. J. Mol. Biol. 4, 500 (1962).Google Scholar
  5. Isenberg, I., and A. Szent-Györgi: On the absorption of heterocyclic electron donors and acceptors. Proc. Nat. Acad. Sci. U.S. 45, 519 (1959).CrossRefGoogle Scholar
  6. Jehle, H.: Intermolecular forces and biological specificity. Proc. Nat. Acad. Sci. U.S. 50, 516 (1963).CrossRefGoogle Scholar
  7. —, W. Parke, and A. Salyers: Charge fluctuation interactions and molecular biophysics. Biophys. 9, 433 (1965).Google Scholar
  8. —, Y. M. Yos, and W. L. Bade: Specificity of charge fluctuation, forces. Phys. Rev. 110, 793 (1958).CrossRefGoogle Scholar
  9. Ladik, J.: Investigation of the electronic structure of desoxyribonucleic acid. I. Approximate calculation of the π-electron overlap between adjacent nucleotide bases. Probable consequences. Acta Phys. Acad. Sci. Hung. 11, 239 (1960).CrossRefGoogle Scholar
  10. — Some new results in the quantum-mechanical calculation of DNA. Electronic Aspects of Biochemistry. New York: Academic Press, Inc. 1964.Google Scholar
  11. — , and K. Appel: Energy-band structure of polynucleotides in the Hückel approximation. J. Chem. Phys. 40, 2470 (1964).CrossRefGoogle Scholar
  12. — , and G. Biczo: Energy-bandcalculations for periodic DNA models in the Hückel approximation. J. Chem. Phys. 42, 1658 (1965).CrossRefGoogle Scholar
  13. Löwdin, P.-O.: Quantum Genetics. International Science and Technology. New York: Conover-Mast, 1963.Google Scholar
  14. — Proton tunneling in DNA and its biological inplications. Rev. Mod. Phys. 35, 724 (1963).CrossRefGoogle Scholar
  15. Mantione, M.-J., and B. Pullman: Sur le mécanisme de la photodimérisation de la thymine. Biochim. Biophys. Acta 91, 387 (1964).Google Scholar
  16. Nagata, C., A. Imamura, Y. Tagashira, and M. Kodama: Quantum mechanical study on the photodimerization of aromatic molecules. J. Theoret. Biol. 9, 357 (1965).CrossRefGoogle Scholar
  17. Nakajima, T., and B. Pullman: Recherches sur la structure électronique des constituants cellulaires fondamentaux et des composés actifs en chimiothérapie anticancéreuse. IV. La force basique des purines et des pyrimidines. Bull. Soc. Chim. France 1502 (1958).Google Scholar
  18. Pullman, A., and B. Pullman: Elements of a general theory of enzymatic hydrolysis. Proc. Nat. Acad. Sci. U.S. 45, 1572 (1959).CrossRefGoogle Scholar
  19. —: Aspects de, la structure électronique des acides nucléiques. J. Chim. Phys. 58, 904 (1961).Google Scholar
  20. Pullman, B.: Electronic aspects of the interactions between the carcinogens and possible cellular sites of their activity. J. Cellular Comp. Physiol. 64, suppl. 1, 91 (1964).CrossRefGoogle Scholar
  21. — Some recent developments in the quantum-mechanical studies on the electronic structure of the nucleic acids. J. Chem. Phys. 43, S 233 (1965).CrossRefGoogle Scholar
  22. —, P. Claverie, and J. Caillet: Intermolecular forces in association, of purines with polybenzenoid hydrocarbons. Science 147, 3663 (1965).CrossRefGoogle Scholar
  23. — , and M.-J. Mantione: Electron distribution in the triplet state and photodimerization of thiothymine. Biochim. Biophys. Acta. 95, 668 (1965).Google Scholar
  24. Pullman, B., and A. Pullman: Electronic delocalization and biochemical evolution. Quantum Theory Project, Technical Note No. 86, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden.Google Scholar
  25. —: Electron-donor and-acceptor properties of biologically important purines, pyrimidines, pteridines, flavins, and aromatic amino acids. Proc. Nat. Acad. Sci. U.S. 44, 1197 (1958).CrossRefGoogle Scholar
  26. —: Some electronic aspects of biochemistry. Rev. Mod. Phys. 32, 428 (1960).CrossRefGoogle Scholar
  27. —: Submolecular structure of the nucleic acids. Nature 189, 725 (1961).CrossRefGoogle Scholar
  28. Suard, M., G. Berthier, and B. Pullman: Sur les états électroniques des protéines. Biochim. Biophys. Acta 52, 254 (1961).CrossRefGoogle Scholar

Appendix II Additional References on the Genetic Code

  1. Basilio, C., A. J. Wahba, P. Lengyel, J. P. Speyer, and S. Ochoa: Synthetic polynucleotides and the amino acid code. V. Proc. Nat. Acad. Sci. U.S. 48, 613 (1962).CrossRefGoogle Scholar
  2. Bernfield, M. R., and M. W. Nirenberg: RNA codewords and protein synthesis. Science 147, 479 (1965).CrossRefGoogle Scholar
  3. Brimacombe, R., J. Trupin, M. W. Nirenberg, P. Leder, M. Bernfield, and T. Jaouni: RNA codewords and protein synthesis. VIII. Proc. Nat. Acad. Sci. U.S. 54, 954 (1965).CrossRefGoogle Scholar
  4. Crick, F. H. C., J. S. Griffith, and L. E. Orgel: Codes without commas. Proc. Nat. Acad. Sci. U.S. 43, 416 (1957).CrossRefGoogle Scholar
  5. —, L. Barnett, S. Breniner, and R. J. Watts-Tobin: General nature of the genetic code for proteins. Nature 192, 1227 (1961).CrossRefGoogle Scholar
  6. — : Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol. 19, 548 (1966).Google Scholar
  7. — The genetic code: III. Sci. Am. 215, 55 (1966).CrossRefGoogle Scholar
  8. Gardner, R. S., A. J. Wahba, C. Basilio, R. S. Miller, P. Lengyel, and J. F. Speyer: Synthetic polynucleotides and the amino acid code. VII. Proc. Nat. Acad. Sci. U.S. 48, 2087 (1962).CrossRefGoogle Scholar
  9. Heppel, L. A., P. J. Ortiz, and S. Ochoa: Studies on polynucleotides synthesized by polynucleotide phosphorylase. I. J. Biol. Chem. 229, 679 (1957).Google Scholar
  10. —: Studies on polynucleotides synthesized by polynucleotide phosphorylase. II. J. Biol. Chem. 229, 695 (1957).Google Scholar
  11. Jones, D. S., S. Nishimura, and H. G. Khorana: Studies on polynucleotides. VI. J. Mol. Biol. 16, 454 (1966).Google Scholar
  12. Jones, Jr., O. W., and M. W. Nirenberg: Qualitative survey of RNA codewords. Proc. Nat. Acad. Sci. U.S. 48, 2115 (1962).CrossRefGoogle Scholar
  13. Kellog, D. A., B. Doctor, J. Loebel, and M. W. Nirenberg: RNA codons and protein synthesis. IX. Proc. Nat. Acad. Sci. U.S. 55, 912 (1966).CrossRefGoogle Scholar
  14. Khorana, H. G.: Polynucleotide synthesis and the genetic code. Federation Proc. 24, 1473 (1965).Google Scholar
  15. Leder, P., B. F. C. Clark, W. S. Sly, S. Pestka, and M. W. Nirenberg: Cell-free peptide synthesis dependent upon synthetic oligodeoxynucleotides. Proc. Nat., Acad. Sci. U.S. 50, 1135 (1963).CrossRefGoogle Scholar
  16. — , and M. W. Nirenberg: RNA codewords and protein synthesis. II. Proc. Nat. Acad. Sci. U.S. 52, 420 (1964).CrossRefGoogle Scholar
  17. —: RNA codewords and protein synthesis. III. Proc. Nat. Acad. Sci. U.S. 52, 1521 (1964).CrossRefGoogle Scholar
  18. Lengyel, P., J. F. Speyer, and S. Ochoa: Synthetic polynucleotides and the amino acid code. Proc. Nat. Acad. Sci. U.S. 47, 1936 (1961).CrossRefGoogle Scholar
  19. —, C. Basilio, and S. Ochoa: Synthetic polynucleotides and the amino acid code. III. Proc. Nat. Acad. Sci. U.S. 48, 282 (1962).CrossRefGoogle Scholar
  20. Martin, R. G., J. H. Matthaei, O. W. Jones, and M. W. Nirenberg: Ribonucleotide composition of the genetic code. Biochem. Biophys. Res. Commun. 6, 410 (1962).CrossRefGoogle Scholar
  21. Matthaei, J. H., and M. W. Nirenberg: Characteristics and stabilization of DNAASE—sensitive protein synthesis in E. coli extracts. Proc. Nat. Acad. Sci. U.S. 47, 1580 (1961).CrossRefGoogle Scholar
  22. —, O. W. Jones, R. G. Martin, and M. W. Nirenberg: Characteristics and composition of RNA coding units. Proc. Nat. Acad. Sci. U.S. 48, 666 (1962).CrossRefGoogle Scholar
  23. Nirenberg, M. W., and J. H. Matthaei: The dependence of cell-free protein synthesis in E. coli upon naturally occuring or synthetic polyribonucleotides Proc. Nat. Acad. Sci. U.S. 47, 1588 (1961).CrossRefGoogle Scholar
  24. — and O. W. Jones: An intermediate in the biosynthesis of polyphenylalanine directed by synthetic template RNA. Proc. Nat. Acad. Sci. U.S. 48, 104 (1962).CrossRefGoogle Scholar
  25. — , and O. W. Jones: Current status of the RNA code. Informational Macromolecules, edited by H. J. Vogel, V. Bryson, and J. O. Lampen. New York: Academic Press 1963.Google Scholar
  26. —, J. H. Matthaei, O. W. Jones, R. G. Martin, and S. H. Barondes: Approximation of genetic code via cell-free protein synthesis directed by template RNA. Federation Proc. 22, 55 (1963).Google Scholar
  27. —, O. Jones, P. Leder, B. Clark, W. Sly, and S. Pestka: Synthesis and structure of macromolecules. Cold Spring Harbor Symp. Quant. Biol. 28, 549 (1963).Google Scholar
  28. — , and P. Leder: RNA codewords and protein synthesis. Science 145, 1399 (1964).CrossRefGoogle Scholar
  29. —, M. Bernfield, R. Brimacombe, J. Trupin, F. M. Rottman, and C. O’Neal: RNA codewords and protein synthesis. VII. Proc. Nat. Acad. Sci. U.S. 53, 1161 (1965).CrossRefGoogle Scholar
  30. Nishimura, S., D. S. Jones, E. Ohtsuka, H. Hayatsu, T. M. Jacob, and H. G. Khorana: Studies on polynucleotides. XLVII. J. Mol. Biol. 13, 283 (1965).Google Scholar
  31. —, and H. G. Khorana: Studies on polynucleotides. XLVIII. J. Mol. Biol. 13, 302 (1965).Google Scholar
  32. Ochoa, S., D. P. Burma, H. Kröger, and J. D. Weill: Deoxyribonucleic acid-dependent incorporation of nucleotides from nucleoside triphosphates into ribonucleic acid. Proc. Nat. Acad. Sci. U.S. 47, 670 (1961).CrossRefGoogle Scholar
  33. — Synthetic polynucleotides and the genetic code. Informational Macromolecules, edited by H. J. Vogel, V. Bryson, and J. O. Lampen. New York: Academic Press 1963.Google Scholar
  34. — Synthetic polynucleotides and the genetic code. Federation Proc. 22, 62 (1963).Google Scholar
  35. — The chemical basis of heredity—The genetic code. Bull. N. Y. Acad. Med. 40, 387 (1964).Google Scholar
  36. Ortiz, P. J., and S. Ochoa: Studies on polynucleotides synthesized by polynucleotide phosphorylase. IV. J. Biol. Chem., 234, 1208 (1959).Google Scholar
  37. Pestka, S., R. Marshall, and M. W. Nirenberg: RNA codewords and protein synthesis. V. Proc. Nat. Acad. Sci. U.S., 53, 639 (1965).CrossRefGoogle Scholar
  38. Rottman, F., and M. W. Nirenberg: RNA codons and protein synthesis. XI. J. Mol. Biol. 21, 555 (1966).CrossRefGoogle Scholar
  39. Singer, M. F., O. W. Jones, and M. W. Nirenberg: The effect of secondary structure on the template activity of polyribonucleotides. Proc. Nat. Acad. Sci. U.S. 49, 392 (1962).CrossRefGoogle Scholar
  40. Speyer, J. F., P. Lengyel, C. Basilio and S. Ochoa: Synthetic polynucleotides and the amino acid code. II. Proc. Nat. Acad. Sci. U.S. 48, 63 (1962).CrossRefGoogle Scholar
  41. — Synthetic polynucleotides and the amino acid code. IV. Proc. Nat. Acad. Sci. U.S. 48, 441 (1962).CrossRefGoogle Scholar
  42. —: Ribosomal localization of st streptomycin sensitivity. Proc. Nat. Acad. Sci. U.S. 48, 684 (1962).CrossRefGoogle Scholar
  43. Söll, D., E. Ohtsuka, D. S. Jones, R. Lohrmann, H. Hayatsu, S. Nishimura, and H. G. Khorana: Studies on polynucleotides. XLIX. Proc. Nat. Acad. Sci. U.S. 54, 1378 (1965).CrossRefGoogle Scholar
  44. Trupin, J. S., F. M. Rottman, R. L. C. Brimacombe, P. Leder, M. R. Bernfield, and M. W. Nirenberg: RNA codewords and protein synthesis. VI. Proc. Nat. Acad. Sci. U.S. 53, 807 (1965).CrossRefGoogle Scholar
  45. Wahba, A. J., C. Basilio, J. F. Speyer, P. Lengyel, R. S. Miller, and S. Ochoa: Synthetic polynucleotides and the amino acid code. VI. Proc. Nat. Acad. Sci. U.S. 48, 1683 (1962).CrossRefGoogle Scholar
  46. —, R. S. Gardner, C. Basilio, R. S. Miller, and J. F. Speyer: Synthetic polynucleotides and the amino acid code. VIII. Proc. Nat. Acad. Sci. U.S. 49, 116 (1963).CrossRefGoogle Scholar
  47. —, R. S. Miller, C. Basilio, R. S. Gardner, P. Lengyel, and J. F. Speyer: Synthetic polynucleotides and the amino acid code. IX. Proc. Nat. Acad. Sci. U.S. 49, 880 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • S. Fraga
    • 1
  • C. Valdemoro
    • 1
  1. 1.Division of Theoretical Chemistry, Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations