Advertisement

Solar neutrinos: What we have learned

  • John N. Bahcall
Invited Reviews
Part of the Lecture Notes in Physics book series (LNP, volume 458)

Abstract

Four solar neutrino experiments are currently taking data. The results of these experiments confirm the hypothesis that the energy source for solar luminosity is hydrogen fusion. However, the measured rate for each of the four solar neutrino experiments differs significantly (by factors of 2.0 to 3.5) from the corresponding theoretical prediction that is based upon the standard solar model and the simplest version of the standard electroweak theory (zero-neutrino masses, no flavor mixing). If standard electroweak theory is correct, the energy spectrum for 8B neutrinos created in the solar interior must be the same (to one part in 105) as the known laboratory 8B neutrino energy spectrum. A direct comparison of the chlorine and the Kamiokande experiments, both of which are sensitive to 8B neutrinos, suggests that the discrepancy between theory and observations depends upon neutrino energy, in conflict with standard expectations. Monte Carlo studies with 1000 implementations of the standard solar model indicate that the chlorine and the Kamiokande experiments cannot be reconciled unless new weak interaction physics changes the shape of the 8B neutrino energy spectrum. The boundary conditions that the solar model luminosity equals the current observed photon luminosity and that the solar model must be consistent with helioseismological measurements are two of the strongest reasons that the predictions of the standard solar model are robust. The results of the two gallium solar neutrino experiments strengthen the conclusion that new physics is required and help determine a relatively small allowed region for the MSW neutrino parameters. New experiments that will start in 1996 will test-independent of solar models-the inference that physics beyond the standard electroweak model is required to resolve the solar neutrino problem.

Keywords

Solar Neutrino Solar Model Neutrino Flux Neutrino Source Standard Solar Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardsma, G., et al., 1987, Phys. Lett. B, 194, 321.CrossRefADSGoogle Scholar
  2. Abazov, A.,I., et al., 1991b, Phys. Rev. Lett., 67 3332.CrossRefADSGoogle Scholar
  3. Abazov, A.I., et al., 1991a, Nucl. Phys. B (Proc. Suppl.), 19, 84.CrossRefADSGoogle Scholar
  4. Acker, A., Joshipura, A. and Pakvasa, S., 1992, Phys. Lett. B, 285, 371.CrossRefADSGoogle Scholar
  5. Akhmedov, E.Kh., 1988, Phys. Lett. B 213, 64.CrossRefADSGoogle Scholar
  6. Anselmann, P., et al., 1992, Phys. Lett. B, 285, 376.CrossRefADSGoogle Scholar
  7. Anselmann, P., 1993, Phys. Lett. B, 314, 445 (1993).CrossRefADSGoogle Scholar
  8. Arpasella, C., et al., in “Borexino at Gran Sasso: Proposal for a real-time detector for low energy solar neutrinos”, Vols. I and II, University of Milan, INFN report (unpublished).Google Scholar
  9. Bahcall J.N. and Bethe, H.A., 1993, Phys. Rev. D, 47, 1298.CrossRefADSGoogle Scholar
  10. Bahcall, J.N. and Pinsonneault, M.H., 1992, Rev. Mod. Phys., 64, 885.CrossRefADSGoogle Scholar
  11. Bahcall, J.N., 1989, Neutrino Astrophysics, Cambridge University Press, Cambridge, England.Google Scholar
  12. Bahcall, J.N., 1991, Phys. Rev. D, 44, 1644.CrossRefADSGoogle Scholar
  13. Bahcall, J.N., 1993, Phys. Rev. Lett., 71 (15), 2369.CrossRefADSGoogle Scholar
  14. Bahcall, J.N., Baldo-Ceolin, M., Cline, D. and Rubbia, C., 1986, Phys. Lett. B, 178, 324.CrossRefADSGoogle Scholar
  15. Bahcall, J.N., Cabibbo, N. and Aahil, A., 1972, Phys. Rev. Lett., 28, 316.CrossRefADSGoogle Scholar
  16. Bahcall, J.N., 1964, Phys. Rev. Lett., 12, 300.CrossRefADSGoogle Scholar
  17. Berezhiani, Z.G., Fiorentini, G., Moretti, M. and Rossi, A., 1992, Z. Phys. C—Particles and Fields, 54, 581.CrossRefADSGoogle Scholar
  18. Berezhiani, Z.G. and Vysotsky, M.I., 1987, Phys. Lett. B, 199, 281.CrossRefADSGoogle Scholar
  19. Bilenky, S.M. and Pontecorvo, B., 1978, Phys. Rep., 41, 225.CrossRefADSGoogle Scholar
  20. Bilenky, S.M. and Petcov, S.T., 1987, Rev. Mod. Phys., 59, 671.CrossRefADSGoogle Scholar
  21. Bowles, T., and Gavrin, V.,N., 1993, private communicationGoogle Scholar
  22. Chen, H., 1985, Phys. Rev. Lett., 55, 1534.CrossRefADSGoogle Scholar
  23. Cisneros, A., 1971, Astrophys. Space Sci., 10, 87.CrossRefADSGoogle Scholar
  24. Davis, R., Jr. Frontiers of Neutrino Astrophysics, eds Suzuki, Y., and Nakamura, K. Universal Academic Press Inc., Tokyo, Japan, 1993, p. 47.Google Scholar
  25. Davis, R., Jr. 1964, Phys. Rev. Lett., 12, 303.CrossRefADSGoogle Scholar
  26. Ewan, G. et al., 1987, Sudbury Neutrino Observatory Proposal SNO-87-12.Google Scholar
  27. Frieman, J, Haber, H. and Freese, K.,1988, Phys. Lett. B, 200, 115.CrossRefADSGoogle Scholar
  28. Gribov, V. and Pontecorvo, B., 1969 Phys. Lett. B, 28, 493.CrossRefADSGoogle Scholar
  29. Hata, N.and Langacker, P., 1993, Phys. Rev. D, (submited).Google Scholar
  30. He, X.-G., Pakvasa, S. and Raghavan, R.S., 1988, Phys. Rev. D, 38, 1317.CrossRefADSGoogle Scholar
  31. Hirata, K.S., et al., 1989, Phys. Rev. Lett., 63, 16.CrossRefADSGoogle Scholar
  32. Hirata, K.S., et al., 1991, Phys. Rev. D, 44, 2241.CrossRefADSGoogle Scholar
  33. Krastev P.I. and Petcov, S.T., 1993, Phys. Lett. B, 299, 99.CrossRefADSGoogle Scholar
  34. Krauss, L., Gates, E. and White, M., 1993, Phys. Lett. B, 299, 94 (1993).CrossRefADSGoogle Scholar
  35. Kuo, T.K. and J. Pantaleone, J., 1989, Rev. Mod. Phys., 61, 937.CrossRefADSGoogle Scholar
  36. Lanou, R.E., Maris, H.J. and Seidel, G.M., 1987, Phys. Rev. Lett., 65, 1297.Google Scholar
  37. Lim, C.M. and Marciano, W.J., 1988, Phys. Rev. D, 37, 1368.CrossRefADSGoogle Scholar
  38. Mikheyev, S.P., and Smirnov, A., Yu., 1986, Sov. J. Nucl. Phys., 42, 913.Google Scholar
  39. Mikheyev, S.P., and Smirnov, A., Yu., 1986, Sov. Phys. JETP, 64, 4.Google Scholar
  40. Mikheyev, S.P., and Smirnov, A., Yu., 1986, Nuovo Cimento, 9C, 17.ADSGoogle Scholar
  41. Mikheyev, S.P., and Smirnov, A., Yu., 1989, Progress in Part. and Nucl. Physics, 23, 41.CrossRefADSGoogle Scholar
  42. Okun, L.B., 1986, Sov. J. Nucl. Phys., 44, 546.Google Scholar
  43. Pakvasa, S. and Tennakone, K., 1972, Phys. Rev. Lett., 28, 1415.CrossRefADSGoogle Scholar
  44. Pontecorvo, B., 1968, Sov. Phys. JETP, 26, 984.ADSGoogle Scholar
  45. Porter, F.S., 1994, PhD. Thesis, Brown University (1994, unpublished).Google Scholar
  46. Raghavan, R.S., 1990, in Proceedings of the XXVth International Conference on High Energy Physics, Singapore, 1990, edited by K. K. Phua and Y. Yamaguchi (World Scientific, Singapore), Vol. 1, p. 482.Google Scholar
  47. Ranucci, G., 1993, for the Borexino Collaboration, Nucl. Phys. B (Proc. Suppl.), 32, 149.CrossRefADSGoogle Scholar
  48. Revol, J.P., 1993, Frontiers of Neutrino Astrophysics, eds Suzuki, Y., and Nakamura, K. Universal Academic Press Inc., Tokyo, Japan, 1993, p. 167.Google Scholar
  49. Rubbia, C., 1977, CERN-EP Internal Report, 77-8..Google Scholar
  50. Schatzman, E., 1951, Comptes Rendus, 232, 1740.Google Scholar
  51. Schechter, J., and Valle, J.W.F., 1981, Phys. Rev. D, 24, 1883.CrossRefADSGoogle Scholar
  52. Seguinot, J., Ypsilantis, T. and Zichini, A., 1992, “A High Rate Solar Neutrino Detector with Energy Determination,” LPC92-31, College de France, 12/8/92.Google Scholar
  53. Shi, X, Schramm, D.N. and Bahcall, J.N., 1992, Phys. Rev. Lett., 69, 717.CrossRefADSGoogle Scholar
  54. Suzuki, Y., Frontiers of Neutrino Astrophysics, eds Suzuki, Y., and Nakamura, K. Universal Academic Press Inc., Tokyo, Japan, 1993, p. 61.Google Scholar
  55. Suzuki, A., 1987, in Proceedings of the Workshop on Elementary-Particle Picture of the Universe, Tsukuba, Japan, 1987, edited by M. Yoshimura, Y. Totsuka, and K. Nakamura, 1987. (KEK Report No. 87-1, Tsukuba, 1987), p. 136.Google Scholar
  56. Takita, M., 1993, Frontiers of Neutrino Astrophysics, eds Suzuki, Y., and Nakamura, K. Universal Academic Press Inc., Tokyo, Japan, 1993, p. 135.Google Scholar
  57. Totsuka, Y., 1990, in Proceedings of the International Symposium on Underground Physics Experiments, edited by Nakamura, K. (ICRR, University of Tokyo), p. 129.Google Scholar
  58. Voloshin, M.B., and Vysotsky, M.I. Sov. J. Nucl. Phys., 44, 544.Google Scholar
  59. Voloshin, M.B., Vysotsky, M.I. and Okun, L.B., 1986, Sov. Phys. JETP, 64, 446.Google Scholar
  60. Wolfenstein, L., 1978, Phys. Rev. D, 17, 2369.CrossRefADSGoogle Scholar
  61. Wolfenstein, L., 1979, Phys. Rev. D, 20, 2634.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • John N. Bahcall
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations