Advertisement

On the zeta-potential of sulfonated polystyrene model colloids

  • D. Bastos
  • F. J. de las Nieves
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 93)

Abstract

Highly sulfonated polystyrene latex particles were prepared by a two-stage "shot-growth" emulsion polymerization process in the absence of emulsifier. Sodium styrene sulfonate was used as an ionic comonomer to produce latex particles with the same particle size and different surface charge densities. The conversion of electrophoretic mobility measurements into zeta-potential (ξ) data was carried out according to several theoretical approaches: Smoluchowski, O’Brien and White, and Dukhin and Semenikhin. The current electrophoretic theories give rise to a maximum in ξ-potential. Thisd behavior contradicts the classical electric double layer (e.d.l.) models which predict a continuous decrease in the electrokinetic potential. These theoretical approaches assume the absence of ionic conduction inside the shear plane. Dukhin and Semenikhin have developed an attempt to account for this phenomenon theoretically. In this work, we have calculated the ξ-potential of sulfonated polystyrene latex particles in the presence of symmetrical 1:1 and 2:2 electrolytes. The zeta-potentials estimated by the O’Brien and White (ξO-W) theory display a maximum and their values were lower than those calculated by the Dukhin and Semenikhin (ξD-S) theory, with which the maximum disappears. The considerations made by both theories about the contribution of all ions of the e.d.l. to the ionic conduction within this layer, is the reason for that differences.

Key words

Sulfonated polystyrene latexes zeta-potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ottewill RH, Shaw JN, (1967) Kolloid Z Z Polym 218:34CrossRefGoogle Scholar
  2. 2.
    Kotera A, Furusawa K, Takeda Y (1970) Kolloid Z Z Polym 239:677CrossRefGoogle Scholar
  3. 3.
    Furusawa K, Norde W, Lyklema J (1972) Kolloid Z Z Polym 250:908CrossRefGoogle Scholar
  4. 4.
    Bijsterbosch BH (1978) Colloid Polym Sci 256:343CrossRefGoogle Scholar
  5. 5.
    Goodwin JW, Hearn J, Ho CC, Ottewill RH (1973) Br Polym J 5:347CrossRefGoogle Scholar
  6. 6.
    Brouwer WM, Zsom RLJ (1987) Colloids Surfaces 24:195CrossRefGoogle Scholar
  7. 7.
    Tamai H, Niino K, Suzawa T (1989) J Colloid Interface Sci 131:1CrossRefGoogle Scholar
  8. 8.
    Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1989) J Polym Sci, Polym Chem Ed 27:3187Google Scholar
  9. 9.
    Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1992) J Polym Sci, Polym Chem Ed 30:171Google Scholar
  10. 10.
    Tsaur SL, Fitch RM (1987) J Colloid Interface Sci 115:450CrossRefGoogle Scholar
  11. 11.
    de las Nieves FJ, Daniels ES, El-Aasser MS (1991) Colloids Surfaces 60:107CrossRefGoogle Scholar
  12. 12.
    Bastos D, de las Nieves FJ, Colloid Polym Sci, in pressGoogle Scholar
  13. 13.
    Midmore BR, Hunter RJ (1988) J Colloid Interface Sci 122:521CrossRefGoogle Scholar
  14. 14.
    Hidalgo-Alvarez R, de las Nieves FJ, Van der Linde de AJ, Bijsterbosch BH (1986) Colloids Surfaces 21:259CrossRefGoogle Scholar
  15. 15.
    Elimelech M, O'Melia Ch (1990) Colloids Surfaces 44:165CrossRefGoogle Scholar
  16. 16.
    Chow RS, Takamura K (1988) J Colloid Interface Sci 125:226CrossRefGoogle Scholar
  17. 17.
    Van der Linde AJ, Bijsterbosch BH (1990) Croatica Chim Acta 63:455Google Scholar
  18. 18.
    Overbeek JThG (1943) Kolloid Chem Beih 54:287Google Scholar
  19. 19.
    Booth F (1950) Proc Roy Soc (London) Ser A 203:514CrossRefGoogle Scholar
  20. 20.
    O'Brien RW, White LR (1978) J Chem Soc, Faraday Trans II 77:1607CrossRefGoogle Scholar
  21. 21.
    Wiersema PH (1964) Rijkuniversiteit, UtrechtGoogle Scholar
  22. 22.
    Moleón-Baca JA, Rubio-Hernández FJ, de las Nieves FJ, Hidalgo-Alvarez R (1991) J Non-Equilib Thermodyn 16:187CrossRefGoogle Scholar
  23. 23.
    Semenikhin NM, Dukhin SS (1975) Kolloidn Zh 37:1127Google Scholar
  24. 24.
    Zukoski CF, Saville DA (1985) J Colloid Interface Sci 107:322CrossRefGoogle Scholar
  25. 25.
    Ottewill RH, Shaw JN (1972) J Electroanal Chem 37:133CrossRefGoogle Scholar
  26. 26.
    Dukhin SS, Derjaguin BV (1974) in "Surface and Colloid Science", Ed. Matijevic E, vol 7, Wiley, New YorkGoogle Scholar
  27. 27.
    Hidalgo-Alvarez R (1991) Adv Colloid Interface Sci 34:217CrossRefGoogle Scholar
  28. 28.
    Hidalgo-Alvarez R, Moleon JA, de las Nieves FJ, Bijsterbosch BH (1992) J Colloid Interface Sci 149:23CrossRefGoogle Scholar
  29. 29.
    Baran AA, Dukhina LM, Soboleva NM, Chechik OS (1981)Kolloidn Zh 43:211Google Scholar
  30. 30.
    Galisteo F, de las Nieves FJ, Cabrerizo M, Hidalgo-Alvarez R (1990) Progr Colloid Polym Sci 82:313CrossRefGoogle Scholar
  31. 31.
    Bastos D (1992) M S These, University of Granada, SpainGoogle Scholar
  32. 32.
    Eversole WEG, Boardman WW (1941) J Chem Phys 9:798CrossRefGoogle Scholar
  33. 33.
    Shirahama H, Suzawa F (1984) J Appl Polym Sci 27:3651CrossRefGoogle Scholar
  34. 34.
    Shirahama H, Suzawa T (1985) J Colloid Interface Sci 104:416CrossRefGoogle Scholar
  35. 35.
    Rubio-Hernández FJ, de las Nieves FJ, Bijsterbosch BH, Hidalgo-Alvarez R (1989) In: The Plastic and Rubber Institute (ed) "Polymer Latex III", p 15/1, LondonGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1993

Authors and Affiliations

  • D. Bastos
    • 1
  • F. J. de las Nieves
    • 1
  1. 1.Biocolloids and Fluid Physics Group Department of Applied PhysicsUniversity of GranadaGranadaSpain

Personalised recommendations