Skip to main content

Production of nanoparticles: polymerization termination and molecular weights during radical-induced emulsifier-free emulsion polymerization (heterogeneous polymerization)

  • Latices
  • Conference paper
  • First Online:
Horizons 2000 – aspects of colloid and interface science at the turn of the millenium

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 109))

Abstract

Polymethylmethacrylate (PMMA) nanoparticles were produced by radical-induced emulsifier-free emulsion poly-merization (heterogeneous polymerization) in aqueous solution using γ-rays, ammonium persulphate (APS) and potassium persulphate as initiators. The conditions of polymerization were varied with regard to the concentration of monomer and initiator, the temperature of reaction, and the properties of the reaction mixture. The molecular weights of the polymers were determined by gel permeation chromatography (GPC) and by viscosimetry. Increasing amounts of monomer increased the molecular weight up to a concentration of 3% MMA. Monomer concentrations higher than 3% led to a decrease in the molecular weight most likely due to the high viscosity and diffusion distances in the resulting polymer particles. The concentration of initiator (APS) up to a concentration of 0.3% decreased the molecular weight without significant change in the molecular weight distribution of the resulting polymers. Magnesium sulphate, potassium chloride as well as higher viscosities of the reaction media led to an increase in the molecular weight. In contrast, an increase in reaction temperature and addition of potassium nitrate decreased the molecular weights. The molecular weights determined by GPC were confirmed by a comparison with molecular weights resulting from viscosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitch RM (1973) Br Polym J 5:467–483

    Article  CAS  Google Scholar 

  2. Fitch RM, Prenosil MB, Sprick KJ (1969) J Polym Sci C 27:95–118

    Google Scholar 

  3. Fitch RM, Tsai C (1970) Polym Lett 8:703–710

    Article  CAS  Google Scholar 

  4. Kreuter J (1994) In: Kreuter J (ed) Colloidal Drug Delivery Systems. Marcel Dekker, New York, pp 219–342

    Google Scholar 

  5. Kreuter J (1994) Eur J Drug Metabol Pharmakokin 3:253–256

    Article  Google Scholar 

  6. Kreuter J (1982) J Polym Sci. Polym Lett Ed 20:243–245

    Article  Google Scholar 

  7. Baxendale JH, Evans MG, Kilham JK (1946) J Polym Sci 1:466–474

    Article  CAS  Google Scholar 

  8. Baxendale JH, Evans MG, Kilham JK (1946) Trans Faraday Soc 42:668–675

    Article  CAS  Google Scholar 

  9. Baxendale JH, Bywater S, Evans MG. (1946) Trans Faraday Soc 42:675–684

    Article  CAS  Google Scholar 

  10. Riddich TM (1968) In: Control of Colloid Stability through Zeta Potential. Livingston, Wynneford, PA, pp 208–239

    Google Scholar 

  11. Verwey EJW (1940) Trans Farad Soc 36:192–203

    Article  CAS  Google Scholar 

  12. Powis F (1941) Z Phys Chem 89:186–212

    Google Scholar 

  13. Riddle EH (1954) In: Monomeric Acrylic Esters. Reinhold, New York, p 15

    Google Scholar 

  14. Tessmar K (1961) In: Müller E (ed) Methoden der organischen Chemie (Houben-Weyl) XIV/1. George Thieme, Stuttgart, p 1037

    Google Scholar 

  15. Waters Associates Inc (1974) DS 047, Milford, MA

    Google Scholar 

  16. Martin AN, Swarbrick JM, Cammarata A (1987) In: Physikalische Pharmazie: Wissenschaftliche Verlagsgescllschaft, Stuttgart, pp 455–456

    Google Scholar 

  17. Bentele V, Berg UE, Kreuter J (1982) Int J Pharm 13:109–113

    Article  CAS  Google Scholar 

  18. Kreuter J (1983) Pharm Act Helv 56:196–209

    Google Scholar 

  19. Berg UE, Kreuter J, Speiser PP, Solvia M (1986) Pharm Ind 48:75–79

    CAS  Google Scholar 

  20. Wunderlich W, Strickler M (1985) Polym Sci Technol 31:505–516

    CAS  Google Scholar 

  21. Maschio G, Moutier C (1989) J Appl Polym Sci 37:825–840

    Article  CAS  Google Scholar 

  22. Hamielec (1986) In: Notes on Polymerization Reaction Engineering. McMaster Univ

    Google Scholar 

  23. Ponnuswamy SR, Penilidis A, Kiparissides C (1988) Chem Eng J 39:175–183

    Article  CAS  Google Scholar 

  24. Kreuter J, Liehl E, Berg UE, Solvia M, Speiser PP (1988) Vaccine 6:253–256

    Article  CAS  Google Scholar 

  25. Stieneker F, Kersten G, van Bloois L, Crommelin DJA, Hem SL, Löwer J, Kreuter J (1995) Vaccine 13:45–53

    Article  CAS  Google Scholar 

  26. Kreuter J, Speiser P (1976) Infect Immunol 13:204–210

    CAS  Google Scholar 

  27. Kreuter, Mauler R, Gruschkau H, Speiser PP (1976) Exp Cell Biol 44:12–19

    CAS  Google Scholar 

  28. Kreuter J, Liehl E (1978) Med Microbiol Immunol 165:111–117

    Article  CAS  Google Scholar 

  29. Kreuter J, Liehl E (1981) J Pharm Sci 70:367–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Lagaly

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Marburger, C., Kreuter, J. (1998). Production of nanoparticles: polymerization termination and molecular weights during radical-induced emulsifier-free emulsion polymerization (heterogeneous polymerization). In: Lagaly, G. (eds) Horizons 2000 – aspects of colloid and interface science at the turn of the millenium. Progress in Colloid & Polymer Science, vol 109. Steinkopff. https://doi.org/10.1007/BFb0118180

Download citation

  • DOI: https://doi.org/10.1007/BFb0118180

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1113-2

  • Online ISBN: 978-3-7985-1654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics