Skip to main content

Lyotropic liquid-crystalline elastomers

  • Macromolecules
  • Conference paper
  • First Online:
Structure, Dynamics and Properties of Disperse Colloidal Systems

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 111))

Abstract

The linkage of nonionic amphiphiles via their hydrophobic ends to the monomer units of a polymer backbone leads to broad hexagonal (H1) and lamellar (Lα) phase regimes in binary mixture with water. Cross-linking of these linear polymers yields rubber-like samples with elastomeric properties, which do not dissolve, but swell with a certain amount of water to form lyotropic mesophases. Mechanical deformation of samples in the mesophase causes a reversible alignment of the hexagonal or lamellar domains. Stressing of the gels during the synthesis of the elastomers enables to lock-in polymer anisotropy. As a result, spontaneously well-aligned LC-samples are produced by swelling with water. The type of alignment depends on the symmetry of the mesophase and the mechanical field. Due to the scaling between macroscopic dimensions and local anisotropy, changes of micellar shape and mesophase structure are visualized as changes of the sample length. This is measured by the hygroelastic method, a combination of simultaneous measurements of water sorption and sample length. It can be shown that the phase transformation between isotropic (L2) and Lα-phase, which is driven by the change of partial vapor pressure of H2O at constant temperature, is accompanied by a discontinuous lengthening of the network in the direction of the stress applied during synthesis. Due to its highly anisotropic swelling behavior, the sample length remains nearly constant within the Lα-127-3-phase, although water is absorbed and the volume increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zentel R, Galli G, Ober CK (eds) (1996) Macromol Symp 107:1–304

    Google Scholar 

  2. Wiesemann A, Zentel R, Lieser G (1995) Acta Polymer 46:25–36

    Article  CAS  Google Scholar 

  3. Adams J, Gronski W (1989) Makromol Chem Rapid Commun 10:553–562

    Article  CAS  Google Scholar 

  4. Walther M, Finkelmann H (1996) Progr Polym Sci 21(5):951–979

    Article  CAS  Google Scholar 

  5. Schädler V, Wiesner U (1997) Macromolecules 30(21):6698–6701

    Article  Google Scholar 

  6. Sänger J, Gronski W, Maas S, Stühn B, Heck B (1996) Macromolecules 30(22):6783–6787

    Article  Google Scholar 

  7. Disch S, Schmidt C, Finkelmann H (1996) In: Salamone JC (ed) Polymeric Materials Encyclopedia, Vol 5. CRC Press, Boca Raton, FL, pp 3794–3801

    Google Scholar 

  8. Grabowski D A, Schmidt C (1994) Macromolecules 27:2632–2634

    Article  CAS  Google Scholar 

  9. Wiesner U (1997) Macromol Chem Phys 198:3319–3352

    Article  CAS  Google Scholar 

  10. Chen ZR, Kornfield JA, Smith SD, Grothaus JD, Satkowski MM (1997) Science 277(5330):1248–1253

    Article  CAS  Google Scholar 

  11. Bouteiller L, Lebarny P (1996) Liq Cryst 21(2):157–174

    Article  CAS  Google Scholar 

  12. Decher G (1996) In: Sauvage JP, Hosseini MW (eds) Comprehensive Surpramolecular Chemistry, Vol 9. Pergamon, Oxford, pp 507–528

    Google Scholar 

  13. Spatz JP, Roescher A, Sheiko S, Krausch G, Möller M (1995) Adv Mater 7(8):731–735

    Article  CAS  Google Scholar 

  14. Krausch G, Mlynek J, Straub W, Brenn R, Marko JF (1994) Europhys Lett 28(5):323–328

    Article  CAS  Google Scholar 

  15. Laschewsky A (1995) Adv Polym Sci 124:1–76

    Article  CAS  Google Scholar 

  16. Finkelmann H, Lühmann B, Rehage G (1982) Colloid Polym Sci 260:56–65

    Article  CAS  Google Scholar 

  17. Löffler R, H. Finkelmann H (1990) Makromol Chem Rapid Commun 11:321–328

    Article  Google Scholar 

  18. Fischer P (1997) Dissertation. Universität Freiburg

    Google Scholar 

  19. Fischer P, Schmidt C, Finkelmann H (1995) Macromol Rapid Commun 16:435–447

    Article  CAS  Google Scholar 

  20. Albrecht H (1997) Dissertation, Universität Freiburg

    Google Scholar 

  21. Lukaschek M, Müller S, Hasenhindl A, Grabowski D A, Schmidt C (1995) Colloid Polym Sci 274:1–2747

    Article  Google Scholar 

  22. Küpfer J, Finkelmann H (1991) Makromol Chem Rapid Commun 12:717–726

    Article  Google Scholar 

  23. P. Kékicheff (1991) Mol Cryst Liq Cryst 198:131–144

    Article  Google Scholar 

  24. Rançon Y, Charvolin J (1988) J Phys Chem 92:2646–2651

    Article  Google Scholar 

  25. Ekwall P, Mandell L, Fontell K (1970) J Colloid Interface Sci 33:215–235

    Article  CAS  Google Scholar 

  26. Fontell K (1973) J Colloid Interface Sci 44:318–329

    Article  CAS  Google Scholar 

  27. Hermes R, Bauer KH (1995) Pharmazie 50(7):481–486

    CAS  Google Scholar 

  28. Dusek K (ed) (1993) Adv Polymer Sci 110:1–269

    Google Scholar 

  29. de Gennes PG, Hébert M, Kant R (1997) Macromol Symp 113:39–49

    Google Scholar 

  30. Hébert M, Kant R, de Gennes PG (1997) Journal de Physique I 7(7):909–919

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Finkelmann .

Editor information

Heinz Rehage Gerhard Peschel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Fischer, P., Finkelmann, H. (1998). Lyotropic liquid-crystalline elastomers. In: Rehage, H., Peschel, G. (eds) Structure, Dynamics and Properties of Disperse Colloidal Systems. Progress in Colloid & Polymer Science, vol 111. Steinkopff. https://doi.org/10.1007/BFb0118121

Download citation

  • DOI: https://doi.org/10.1007/BFb0118121

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1118-7

  • Online ISBN: 978-3-7985-1652-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics