Skip to main content

Effect of temperature and dispersed phase content on the behavior of the dielectric constant of ionic microemulsions below the percolation onset

  • Surfactant Colloids
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 110))

Abstract

A statistical model is developed to describe the dielectric polarization of ionic microemulsions at a region far below percolation in which the microemulsions consist of spherical single droplets with water in the central core surrounded by a layer of surfactant molecules. The model describes the effect of temperature and dispersed phase content on the behavior of the dielectric polarization of ionic water-in-oil microemulsions and explains the experimentally observed increase of the static dielectric permittivity as a function of temperature. The microemulsions formed with the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) have been analyzed with the help of this model. It is shown that the droplet polarizability is proportional to the mean-square fluctuation dipole moment of the droplet. The meansquare dipole moment and the corresponding value of the dielectric increment depend on the equilibrium distribution of counterions within a diffuse double layer. The density distribution of ions is determined by the degree of the dissociation of the ionic surfactant. The relationship between the dielectric permittivity, the constant of dissociation, the content of the dispersed phase and the temperature has been ascertained.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kotlarchyk M, Chen S-H, Huang JS, Kim MW (1983) Phys Rev A 28:508

    Article  CAS  Google Scholar 

  2. Kotlarchyk M, Chen S-H, Huang JS, Kim MW (1984) Phys Rev A 29:2054

    Article  CAS  Google Scholar 

  3. Langevin D (1992) Annu Rev Phys Chem 43:341

    Article  CAS  Google Scholar 

  4. Feldman Y, Kozlovich N, Nir I, Garti N (1995) Phys Rev E 51:478

    Article  CAS  Google Scholar 

  5. Feldman Y, Kozlovich N, Alexandro Y, Nigmatullin R, Ryabov Y (1996) Phys Rev E 54:5420

    Article  CAS  Google Scholar 

  6. Eicke HF, Bercovec M, Das-Gupta B (1989) J Phys Chem 93:314

    Article  CAS  Google Scholar 

  7. Hall DG (1990) J Phys Chem 94:429

    Article  CAS  Google Scholar 

  8. Kozlovich N, Puzenko A, Alexandrov Y, Feldman Y (1998) Colloids and Surfaces A 104:N2–3

    Google Scholar 

  9. Takashima S (1989) Electric Properties of Biopolymers and Membranes. Adam Hilger, Bristol and Philadelphia, p 155

    Google Scholar 

  10. Watt RO, McGee IJ (1976) Liquid State Chemical Physics. Wiley, New York, p 272

    Google Scholar 

  11. Fisher IZ (1964) Statistical theory of liquids. The University of Chicago Press, Chicago, p 113

    Google Scholar 

  12. Beunen JA, Ruckenstein E (1983) J Colloid Interface Sci 96:469

    Article  CAS  Google Scholar 

  13. Ruckenstein E, Beunen JA (1988) Langmuir 4:77

    Article  CAS  Google Scholar 

  14. Sjöblom J, Jönsson B, Nylander C, Lundström I (1983) J Colloid Interface Sci 96:504

    Article  Google Scholar 

  15. De Rozieres J, Middleton MA, Schechter R (1988) J Colloid Interface Sci 124:407

    Article  Google Scholar 

  16. Tomic M, Kallay N (1992) J Phys Chem 96:3874

    Article  CAS  Google Scholar 

  17. Kapre P, Ruckenstein E (1990) J Colloid Interface Sci 137:408

    Article  Google Scholar 

  18. Boas M (1983) In: Mathematical Methods in Physical Sciences. Wiley New York, p 12

    Google Scholar 

  19. Feldman Y, Andrianov A, Polygalov E, Romanychev G, Ermolina I, Zuev Y (1996) Rev Sci Instrum 67:3208

    Article  CAS  Google Scholar 

  20. Hasted JB (1973) Aqueous Dielectrics. Chapman and Hall, London

    Google Scholar 

  21. Belletete M, Lachapelle M, Durocher G (1990) J Phys Chem 94:5337

    Article  CAS  Google Scholar 

  22. Dijk MA, Joosten JGH, Levine YK, Bedeaux D (1989) J Phys Chem 93:2506

    Article  Google Scholar 

  23. D'Angelo M, Fioretto D, Onori G, Palmieri L, Santucci A (1995) Phys Rev E 52:R4620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. J. M. Koper D. Bedeaux C. Cavaco W. F. C. Sager

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Alexandrov, Y., Kozlovich, N., Puzenko, A., Feldman, Y. (1998). Effect of temperature and dispersed phase content on the behavior of the dielectric constant of ionic microemulsions below the percolation onset. In: Koper, G.J.M., Bedeaux, D., Cavaco, C., Sager, W.F.C. (eds) Trends in Colloid and Interface Science XII. Progress in Colloid & Polymer Science, vol 110. Steinkopff. https://doi.org/10.1007/BFb0118069

Download citation

  • DOI: https://doi.org/10.1007/BFb0118069

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1117-0

  • Online ISBN: 978-3-7985-1653-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics